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ABSTRACT

The application of Serviceability as an integral part of the server and network product development process and the
complete lifecycle of a product requires a methodology that can accurately and consistently identify and measure
product  serviceability  issues  and  provide  a  means  to  measure  change  throughout.  Cisco  has  developed  a
Serviceability Architecture and Design Framework (SADF) that can be used to conduct product serviceability audits
and provide feedback into the product development and support process in a consistent, longitudinal manner. The
SADF is composed of three main components; 1) Serviceability Architecture Framework, 2) Design Functions and
Requirements, and 3) Process for Utilizing the SADF. The focus of this paper will be to introduce and describe the
history of the Serviceability Architecture Framework (SAF) which is the foundation of the SADF. 

The  Serviceability  Architecture  Framework  is  composed  of  8  subsystems;  Deployment  Design,  Installation,
Configuration, Monitoring, Notification, Diagnostic, Troubleshooting, and Learning Engine. The subsystems are
augmented by a set of services that are common across the subsystems (centralized management, documentation,
logging, hardware, user experience, and application programming interface (API). Finally the architecture identifies
the sources of information that provide input into the different architectural components and the desired outputs for
the subsystems operating on the inputs. 

This paper will introduce a system process model that identifies the scope of serviceability areas in the context of
customer  product  acquisition  and  system  deployment  and  management.  The  architecture  subsystems  will  be
described in the context of this model and the details of the subsystems, their interdependencies, and their inputs and
outputs will be introduced and discussed.
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INTRODUCTION

Services plays a key role in the deployment and management of most information systems in large and medium size
business and poses unique business and technical challenges due to the integration, customization, and management
of the components that makeup the system. In order to successfully deploy these systems the customer requires a
service  organization  (either  internal  to  the  customer,  a  vendor  organization  or  a  3rd  party)  to  understand  the
customer's  business  requirements,  their  deployment  environment  and  to  help  the  customer  understand  the
capabilities and limitations of the system to be deployed.  System vendors must provide capabilities that meet the
needs of the customer (features, scale, and performance) as well as those of the services organization (configurable,
usable, and learnable).  As a provider of business solutions it is important for Cisco to ensure that their systems meet
the business needs of the customer as well as those of the service organizations in place to deploy and manage them.
Our organization is responsible for overseeing the ability to service products across Cisco’s product portfolio.  It
was  recognized  that  in  order  to  provide  a  consistent  method  for  identifying,  communicating,  and  addressing
serviceability needs across the wide range of products offered by Cisco a “serviceability architecture” needed to be
defined and corresponding “serviceability design functions” or “foundational serviceability requirements” identified
to achieve this goal.  This paper describes the serviceability architecture framework (SAF) that was developed as
part of a comprehensive product serviceability program at Cisco.

SERVICEABILITY ARCHITECTURE FRAMEWORK OVERVIEW 

The goal of the Serviceability Architecture Framework (SAF) project was to develop an architecture that identified a
dynamic  and  user-friendly  system  environment  that  the  field,  support,  engineering,  and  quality  assurance
organizations can use to identify an optimal set of serviceability functionality from a set of defined serviceability
functions.  This  optimal  set  of  serviceability  functionality  could  then  be  incorporated  into  product  and  system
specifications.  SAF provides  the  foundation  for  defining  the  serviceability  functions  following a  tried-and-true
method for building technology architectures.   

The scope of the SAF includes serviceability functionality internal to a system such as hardware and software and
also  functionality  external  to  a  system.  External  serviceability  functionality  includes  training,  documentation,
customer support, community support groups, certifications and processes for using, and maintaining and updating
the framework.

The SAF provides a common vocabulary and object space to identify and describe the different aspects of a system
that a service organization uses during design, deployment, and management.  In addition the architecture identifies
capabilities that should be included or supported in a wide range of products, providing the flexibility of including
capabilities in the product explicitly (such as troubleshooting tools) or external resources (such as troubleshooting
guides).

SERVICEABILITY ARCHITECTURE FRAMEWORK 

Service Deployment and Management Overview

A  general  purpose  model  of  the  process  that  IT  systems  follow  from initial  customer  business  requirements
gathering to deployment and management was developed and is was used as the foundation of the serviceability
architecture framework (see Figure 1).  It is important to recognize and identify the serviceability and usability
factors the impact the eventual deployment and management of a service and to drive the design and construction of
the system to streamline and optimize for those factors.  The process of service/system deployment begins with a
service provider engaging the customer in the understanding of their business requirements.  These requirements
drive the hardware and software features of the service and also identify the target service customers, capacity and
performance requirements, applicable reference architectures, etc.  These early decisions have a significant impact
on all of the processes that take place during deployment and can also be invaluable to product development. The
ability to service a product, to construct an implementation plan, implement that plan and manage the operation of
the  service  is  highly  dependent  on  maintaining  the  thread  of  the  business  problem  it  is  intended  to  address
throughout the product lifecycle and providing the tools and processes to easily and effectively use the service.
Feedback within the different steps in the process is important to both continually improving the underlying product
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and ensuring a proper working service.

The serviceability architecture is composed of eight subsystems that work together to provide the facilities to design,
deploy,  and  operate  a  service/system  (see  Figure.  2).   The  term  subsystem  is  used  to  identify  the  different
architecture components in order to differentiate  one class of functionality from another and is not intended to
represent the architecture necessary to implement a serviceability solution.  While the architecture is represented
using structures  common to software develop design process  we do not intend to suggest  that  this is strictly a
software model and a typical service deployment will be a hybrid of humans and systems providing the functions.

Guiding Principles

There are a number of concepts that are less architectural and serve more as principles that should be considered 
when addressing the serviceability concerns of a service/system.  They are included separately from the subsystems 
in order to establish a mindset that is applicable across all of the subsystems. 
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Central Management

Consolidating the installation, configuration, monitoring, and notification capabilities across the different hardware 
and software components that make up a service into a single location greatly impacts a customer’s ability to both 
manage and troubleshoot a service.  This principal should not be construed to mean that the hardware and software 
components should not provide these capabilities themselves, however, that they should provide the ability to be 
consolidated into a centralized capability.  The principal also encompasses associated directives such a utilizing a 
common set of terms, interaction models, log locations, documentation access, etc.

User Experience

Providing a common, consistent customer user experience is important to a serviceable service/system.  The 
application of generally accepted design principles will dramatically improve the overall efficacy and utility of a 
service.  Such principals include the use of an object-action interaction model, progressive disclosure, common 
vocabulary, task-oriented flows, etc.

Documentation

The traditional methods employed in constructing, delivering, and accessing documentation do not transfer well to 
the delivery of services and systems in the age of distributed, multi-component solutions that are aggregates of 
multiple vendor products.  Documentation should be task-oriented (installation, configuration, troubleshooting), 
accessible via the system, support tagging (with a common set of tags), and be modular to support ease of use.

Logging

The content, structure, and location of system log files for the components of a service system should be common.  
Users should not require a decoder ring to decipher the contents of log files and all acronyms, error codes, etc. 
should be accessible from within the context of the log files, either through co-location or through the user of a log 
file viewer.

Application Programmable Interface (API)
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Providing alternative access to system component operations (non-GUI or CLI based) is important for supporting 
centralized management and integration with existing centralized management systems.  It is recommended that all 
subsystem components provide access to common actions and relevant monitoring data through an application 
programmable interface.

Hardware Security

The ability to configure and manage the hardware components of service/system should not be overlooked.  Proving
basic hardware health and status monitoring, remote management, easy installation and replacement, etc. impact the 
overall serviceability of system and the services running on it.

Support Communities

Utilizing community-based support communities benefits both the customer and service vendor.  These 
communities can benefit from the knowledge and experiences of service customers as well as provide streamline 
facilities for delivering content to customers.

Deployment Design Subsystem

The deployment design subsystem encompasses the processes associated with identifying the business problem the 
customer is trying to address, the environment in which the solution to the problem will be implemented, and an 
implementation plan that includes the hardware and software that makes up the solution and how to deploy them.  
Properly capturing the relevant customer information in the form of features, performance expectations, capacity 
requirements (present and future) and information about the customer’s network, storage, and compute environment 
and the locations where the solution will be deployed and having this information available to the original and future
solution designers as well as to other serviceability subsystems will enable more robust solutions and feedback to 
customers and support personnel when a service/system approaches or exceeds their original values.  

The deployment design subsystem is composed of the following components: Requirements Collection, Functional 
Analysis, Implementation Plan, and Reference Architectures. There are a number of concepts that are less 
architectural and serve more as principles that should be considered when addressing the serviceability concerns of a
service/system.  They are included separately from the subsystems in order to establish a mindset that is applicable 
across all of the subsystems. 

Requirements Collection

The requirements collection component embodies the identification and collection of information from a customer 
that directly impacts the final system deployment design.  This information can be classified into four categories: 
features, performance, capacity, and deployment environment.

Features – a distinguishing characteristic of a system, one that the system is purported to provide and 
something that a customer would be interested in applying to a business problem they are trying to solve.

Performance – measure or perception of how well a system is able to successfully complete the operations that 
it was designed for.  Performance can be measured objectively in terms of speed of completing a single 
operation, the average of multiple like operations, etc. or subjectively such as a user reporting the system is 
operating slowly.

Capacity – the number of things (e.g., network packets, call center agents, virtual machines) that a system can 
support while performing at the expected level.

Deployment Environment – a characterization of the customer’s environment (network, storage, and compute)
that is the target into which the system will be deployed.

Functional Analysis

The functional analysis complement utilizes the data captured from the requirements collection component to 
determine the different elements and their number that should be included in the implementation plan.   Product 
features, system performance by capacity data and heuristics are used to in the analysis process.  As with 
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requirements collection the knowledge and experience of the person performing the functional analysis has a direct 
impact on the outcome of the analysis and utilizing tools that embed the analysis logic will improve the accuracy of 
the results of this process.

Implementation Plan

The implementation plan component is responsible for constructing the design of the system to meet the needs of the
customer taking into account the outcome of the functional analysis as well as the customers exiting environment.  
Referred to as a detailed design and low level design by Cisco Advanced services the resulting plan would include 
specific configuration information or guidelines that match the new hardware/software with the customer’s existing 
network, storage, and compute environment.

Reference Architectures

Reference architectures provide a template solution for implementation of an architecture particular to one or more 
capabilities (e.g. unified communication, IP network, server virtualization) that are based on generalization from a 
number of prior deployments.  The reference architecture provides a common set of components, connectivity, and 
terminology with which to describe the deployment.  A set of capabilities (solution) could have multiple reference 
architectures that share common components but differ in terms type of component providing the same capability to 
address capacity.

Installation Subsystems

The installation subsystem addresses the serviceability issues that begin with the customer receiving system 
product(s), covers the unpacking, racking, and cabling hardware that is part of the system and ends with the 
installation of the base software/firmware required to enable the product(s) for configuration. 

Pre-Install Validation 

The  pre-installation  validation  component  addresses  the  activities  that  occur  when  a  customer  or  customer
representative receives the products that have been ordered in support of the deployment plan.  Standard operating
procedures dictate that the customer must verify that they have received all of the items that were purchased.  In
order to efficiently accomplish the verification process the customer must compare a list of ordered items against the
set of items received; historically this has been a manual process, however increasingly technology is replacing the
manual operations utilizing handheld scanners, bar codes, electronic purchase orders, and inventory management
systems.  

Assemble/Racking/Cabling

The assembly, racking, and cabling of systems can result in a number of problems resulting in calls for support for
instruction, replacement components, cables, etc.  This component addresses the need for proper user instructions,
labeling, packaging, component placement, cabling and cabling systems, and the racking of components.  

Component/Device Discovery 

The  component/device  discovery  component  addresses  two  types  of  discovery:  1)  the  self-discovery  that  a
component/device performs that detects the presence of add-in modules,  blades, cards,  memory, etc. and 2) the
discovery of components/devices by a centralized management system.  

Software Installation

The Software Installation component addresses the installation of the base server operating system or firmware on
the device.   The base installation is intended to prepare the component/device for configuration as a standalone
entity or as part of a larger system.  The component is also used to add applications, drivers, and to update the
software/firmware  on  servers  and  devices  that  have  already  been  installed.   The  component  provides  an
infrastructure  to  collect  responses  from users,  files  or  other  components  in  response  to  input  demands  by  the
software being installed, these inputs can be validated against the rules contained within the validation engine at
different times during the installation process.  Techniques and technologies included within this component are:
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attended  installation,  silent  installation,  unattended  installation,  self-installation,  headless  installation,  network
installation and virtual installation.

Upgrade Engine

The upgrade engine component provides the logic that supports the installation of new versions, drivers, and patches
to servers and devices.  The logic contained in the upgrade engine focuses on determining the compatibility issues
associated with modifying an existing installation with new software as well as understanding the dependencies and
update ordering issues among the different components in a system.  The upgrade engine can direct and orchestrate
the upgrade process automatically through interfacing with the installation component or can guide the user through
the upgrade.

Validation Engine

The validation engine component evaluates the inputs provided by a user or other components against a set of rules
and heuristics.  See Error: Reference source not found below.

Configuration Subsystems

The configuration subsystem focuses on the initial configuration and subsequent post deployment configuration 
changes.  The subsystem makes use of the shared validation engine during the configuration process as well 
introduces addition components to track system changes, archive configurations to support recovery, and managing 
licenses.

Device Discovery

The device discovery component is similar to the discovery component employed by the installation subsystem but
is mainly focused on the discovery of new devices added to a deployed service.   This component monitors the
environment and recognizes changes related to the presences of new devices and passes that information to the
configuration component in order to make it available for configuration.  This component is responsible for walling
off the newly discovered device from impacting the health of the service/system until such time as it is properly
configured.

Configuration

The configuration component manages the make-up of the devices, operating systems, applications, and solutions
that  combined  constitute  the  service/system.   The  configuration  process  is  simply  the  set  of  steps  and  the
information needed by the target element to properly configure it in order for it to perform its intended function.
Interdependences  among  and  between  components  are  managed  within  the  process  which  utilizes  information
contained with the validation to manages the configuration flow.

Archive

Archiving  this  history  of  changes  made  to  the  configuration  of  a  service/system  is  managed  by  the  archive
component.  This component manages the information stored, where it is stored, how often/when it is stored, and
provides methods to restore stored configurations.

Change Management

The archive component manages storing system configuration the change management component captures  and
stores the changes made to the service/system configuration.  The change management component captures  the
change made, who made the change, and when the change was made.  In addition this component provides the
ability for a user or system to view this information.  The component may also provide the ability to export and
replay a set of changes made on a different system in support of problem troubleshooting.

License Management

The license management component provides the capabilities to identify, delegate, and manage the licenses with the
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deployment  of  a  service/system.   In  addition,  the  component  can  provide  reporting  capabilities  along  with
notifications of pending license expirations.

Validation Engine

The validation engine component evaluates the inputs provided by a user or other components against a set of rules
and heuristics.  See Validation Engine below.

Difference Between Troubleshooting and Diagnosis

The difference between troubleshooting and diagnosis is not distinct or easily distinguishable.  For the purposes of 
the serviceability architecture, troubleshooting is defined as a “hands-on” activity which may entail the disassembly 
of a system, hardware and software, to help identify defective components, requires the use of measurement and test 
tools that are not part of the system, and will result in system downtime and higher cost.  Diagnostics are performed 
remotely, using information that can readily be obtained from the system and involves the analysis of discrete 
information and trends, and is facilitated by the understanding of the relationships between the system components 
and the performance of the system.

Diagnostic Subsystem

The diagnostic subsystem is responsible for determining whether a system is operating normally or whether it 
appears to be approaching a condition where it may fail to operate normally.  When such a situation is suspected the 
subsystem attempts to identify the cause of abnormal or unexpected behaviors, to mitigate problems, and to provide 
solutions to system operations issues.  The methods used to perform these functions require the orchestration of 
information obtained from the monitoring, notification, configuration and troubleshooting subsystems.  This 
information is applied to system operation models in the form of algorithms, heuristics and techniques in order to 
determine whether the behavior of the system is correct.  When a system is found to be functioning incorrectly the 
same or additional logic is used to determine which part of the system is behaving abnormally and the type of fault 
that is suspected of causing the problem.  Advanced diagnostic systems, in conjunction with the troubleshooting 
subsystem, provide the ability to perform automatic corrective action once the cause has been accurately identified. 
The corrective actions may include instructions to change system configurations, advice/direction to administrators, 
reverting system changes, etc.  The subsystem can encompass diagnostic procedures that are manual, interactive, 
and autonomous.

Reactive Diagnostics

The reactive diagnostics component is responsible for monitoring and responding to events and alarms generated by
the notification subsystem and directly inspect the (sensor) data captured by the monitoring subsystem with the goal
of reacting to abnormal or unexpected system behaviors.  The reactive diagnostics component must be configured
with fault frames.  A fault frame is an information structure that identifies conditions representative of "stereotyped
situations."  In the case of system diagnostics a fault frame represents the set of events and data that correspond to
specific conditions within the system that are associated with abnormal behaviors and failures.  A fault frame may
include the ability to seek out additional data that is not readily available from the monitoring subsystem (such as
configuration data) or algorithms (scripts) that can be executed to test for specific conditions or acquired sensor data
that is not captured as part of routine monitoring in support of identifying the source of the problem.  A fully defined
fault frame would include remediation required to address the identified fault.  When the conditions of a fault frame
have been met the reactive diagnostic component will send a message to the Orchestrator component notifying it of
the fault and providing the remediation information contained the fault frame.

Predictive Diagnostics

The predictive diagnostics component operates similarly to the reactive diagnostics component with the primary
exception being that with predictive diagnostics the fault frames are defined to predict system abnormal behavior
and to make system corrections to prevent the problem from occurring.  Operational models are developed using
historical  data used to identify the system events and monitor values  that  are correlated  with abnormal system
behaviors.  Through repeated observations of the relationship between data measurements and system performance
the suspected cause  and effect  relationships  can be formed into predictive models.    The relationship between
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monitored values and how the system performs can be modeled in a fault frame, but unlike a reactive diagnostic
fault frame, the predictive fault frame will look to match events and sensor data that may not have an obvious
relationship to the problem it is trying to prevent.  In addition the remediation that might be included in the fault
frame may not be targeted at services associated with the problem. 

Orchestrator 

The orchestrator is responsible for managing communication across the different SAF subsystem; see the
Orchestrator section in the Shared Architectural Components for more information.

Self-Healing Engine

The self-healing engine component is responsible for taking instruction from the orchestrator (provided by
other subsystems) and implementing those changes; see the Self-Healing section in the Shared Architectural
Components for more information.

Scheduler

The  scheduler  component  is  responsible  for  managing  the  execution  of  scheduled  activities  across  the
different  SAF  subsystem;  see  the  Scheduler  section  in  the  Shared  Architectural  Components  for  more
information.

Troubleshooting Subsystem

The troubleshooting subsystem is responsible for supporting the logical, systematic search for the source of a 
problem so that it can be fixed and the system made operational.  Troubleshooting processes are critical to 
maintaining systems where symptoms of a problem can have many possible sources.  Troubleshooting requires the 
identification of system malfunctions through the use of monitoring data, events, and alarms.  Troubleshooting is 
most often a process of elimination, potential causes of problems are identified and potential causes are discounted 
or confirmed.  Confirmation that a problem was the cause of a malfunction typically comes in the form of 
restoration of the system to a normal working state.

A system can be described in terms of its expected, desired or intended behavior, its ability to provide a set of 
services based on the availability of resources and proper configuration.  A model of how the system should operate 
under normal, proper condition is essential in order to be able to identify when it is not performing as it should, 
events and inputs to the system are expected to generate specific results or outputs.  When a problem occurs, it can 
be described in terms of symptoms of a malfunction (a deviation from expected behavior) and troubleshooting is the 
process of isolating the specific cause or causes of the symptom.   Efficient troubleshooting requires a clear 
understanding of expected behavior and the relationship between the symptoms of a problem and the set of 
prospective causes that could lead to the symptoms.  The progressive elimination of the possible causes until the root
cause is found characterizes the troubleshooting process.

Typically the troubleshooting process ends when the problem is resolved.  This is due to the nature of the processes 
needed to eliminate possible causes, in order to test whether a specific condition has caused the malfunction the 
suspected problem has to be remedied and then the system monitored to see if it returns to a normal working state.  
Depending on the state of the system this process can lead to spurious changes to the system that do not fix the 
problem and could lead to additional problems.  Backing out changes that do not address the problem being 
investigated is important to ensuring that the changes made during the troubleshooting process that did not fix the 
problem are reverted in order to avoid unexpected consequences.

Troubleshooting is the process of finding and eliminating the cause of a problem.  The process is an iterative one 
that can be characterize by the steps below:

1) Monitoring information is collected and analyzed by system or user,
2) A failure or performance anomaly is identified,
3) Possible causes of the problem are identified,
4) One of the possible causes of the problem is selected and a fix for the problem is implemented,
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5) The system is monitored to determine if the fix has resolved the problem.  If the system returns to normal state
the problem is determined to be fixed, if not then another possible cause for the problem is selected and the
fix for that cause is implemented.  This process is repeated until the system returns to normal state.

The efficiency of the troubleshooting process is a function of a number of factors ranging from the fidelity and 
accuracy of the errors reported by a system when an error is identified to the expertise of the user or system involved
in the identification of possible causes of the problem.

Troubleshooting Methods

There are a number of troubleshooting methods that may be supported within a troubleshooting subsystem and those
included will  impact  how the system reacts  to and solves  problems.  Examples  of  troubleshooting methods to
consider are 1) frequency of incidence, 2) system bisection, 3) flow charts, 4) checklists, 5) procedures, and 6) root
cause analysis.

Fault Identification 

The fault identification component is responsible for identifying when faults occur in a system.  The component is
configured to look for events that are indicative of a problem in the system.  The fault identification registers with
the notification subsystem to be notified when specific events occur within the system; the set of fault cases that are
registered with the troubleshooting subsystem identify the events that are registered.  When the fault identification
component is notified that a fault event took place the component will identify the fault cases that have this event
defined as a condition of presence and send those fault cases to the orchestrator for disposition of the fault case.  

A fault case can have multiple events that need to be present in order for the fault to be considered to have occurred.
The fault identification component needs to contain logic in order to coalesce the presence of the events, manage the
temporal relationships among the different events within a fault and to clear faults from consideration based on
expiration periods and other dependencies (such as a reboot, etc).

Cause Isolation 

The cause isolation component is responsible for paring the set of fault cases that have been identified as possible
causes of a fault.  This component possess the logic to analyze the properties of the set of fault cases passed to it by
the orchestrator component and to identify attributes and their values that distinguishes them from each other.  The
distinguishing attribute values can then be collected, using the symptom collection component, and the results can
then be used to eliminate fault cases from the set of possible fault cases when they do not match the expected values.

Symptom Collector 

The symptom collector component collects monitoring and configuration information from system components in
response to requests made to it by the cause isolation component.  The symptom collector is configured to be able to
access monitoring and configuration information from the different components that make up the system.  It must be
able  to  support  the  different  industry standards  for  remote  access  and  must  be  able to  support  changes  to  the
configuration  without  disrupting  current  processes.   The  system  must  allow  remote  access  to  configuration
information and so this information needs to be in a machine readable format that does not require heroic effort to
access.

Orchestrator 

The  orchestrator  is  responsible  for  managing  communication  across  the  different  SAF  subsystem;  see  the
Orchestrator section in the Shared Architectural Components for more information.

Self-Healing Engine 

The self-healing engine component of the troubleshooting subsystem is responsible for taking problem remediation
instructions from the orchestrator  and  implementing those changes.   The instructions usually  take  the form of
modifying system component configuration values but can include sending instructions to the user via an application
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user interface or resetting a device.  The self-healing engine contains a library of command sets that are associated
with a system component and commands that  can be used to manipulate that  component,  through a supported
interface such as an API (application programmable interface), a user interface (CLI or GUI), SNMP, etc.  The
system component would provide support for the interface and the self-healing engine would construct the set and
execution order of configuration and management programs to utilize those interfaces.

Solution Verification 

The solution verification component is responsible for verifying that the system has returned to normal or expected
operation  when  instructed  to  do  so  by  the  orchestrator,  the  post-corrective  state  is  defined  within  the  normal
operations model for the system or within the fault case if the solution will put the system in a non-optimal/normal
state.  The orchestrator will provide the set of “tests” that the solution verification component is to perform to make
the determination, which will usually involve operations such as determining the status by comparing monitored
values with normal system operation values, and looking for specific events/messages in component log files.  The
outcome of the execution of each test is returned to the orchestrator in order for the orchestrator to capture and
report them to the notification subsystem.

Notification Subsystem

The notification subsystem is responsible for passing along the alerts and events identified by the monitoring 
subsystem to the appropriate subsystems, user interface or API.  The notification subsystem is composed of a 
configuration, engine, and delivery component.

Notification Configuration

The notification configuration component is used to identify the alerts and events that should be passed along, the
components they should be passed along to, the protocol to be used, and the method to be used to verify delivery.

Notification Engine

The notification engine component  uses  the  configuration  information defined  in  the  notification configuration
component and the messages received from the monitoring subsystems and determines what notifications should be
sent to where.

Notification Delivery

The notification delivery component performs the mechanics of connecting to a notification 
target, transferring the message, enduring delivery, and verifying the receipt.

Learning Engine Subsystem

The learning engine subsystem represents the higher level cognitive functions performed by humans such as 
reasoning, generating and verifying hypotheses, pattern recognition, etc.  These capabilities are found in various 
forms in different industries and while applicable to the SAF they have not been adequately evaluated for inclusion.

Shared Architectural Components

Chapter contains the discussion of components that can be found in multiple subsystems and may be implemented as
a single component shared across subsystems.

Scheduler

The scheduler component is used to manage the execution of operations that have be configured to occur on a define
frequency.   A schedule item will identify the activity to be executed, the frequency of execution, time of day to be
run, and the maximum time to run.  The scheduler supports the ability to monitor the execution of scheduled activity
and to terminate an activity should it not be completed by the maximum time to run.  The scheduler should prevent
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two of the same activities from executing at the same time.  The engine will report to the orchestrator the successful
completion or failure to complete the set of instructions provided.

Orchestrator

The orchestrator is responsible for managing the communication and interplay between SAF subsystems.  Messages
are passed between subsystems through the orchestrator which is configured to control how it responds to these
inputs.  The orchestrator is configured with order and dependency rules in order to properly order message passing
and to manage communication.

Validation Engine

The validation engine evaluates  the inputs  provided by a  user  or  other  components  against  a  set  of  rules  and
heuristics.  The engine provides or establishes simple field level validation (such as regular expressions), field-to-
field validation (if value X then user must provide value Y), object/page validation (all data provided for object Z),
and  solution level  validation (all  required  components  have  been properly  configured).   A common validation
engine underscores the importance of a common set of logic and infrastructure to validate installation of individual
components and their interdependencies.

Self-Healing Engine

The self-healing engine is responsible for taking instruction from the orchestrator (provided by other subsystems)
and implementing those changes.  The instructions take the form of modifying system component configuration
values but can include sending instructions to the user via an application user interface or resetting a device.  The
self-healing engine contains a library of command sets that are associated with a system component and commands
that  can  be  used  to  manipulate  that  component,  through  a  supported  interface  such  as  an  API  (application
programmable interface), a user interface (CLI or GUI), SNMP, etc.  

CONCLUSIONS

This  paper  introduced  a  serviceability  architecture  that  can  be  used  to  describe  a  common process  model  for
deploying service solutions and identified the serviceability capabilities that should be considered. A vocabulary for
describing the architecture and its components is introduced.  This model can be used in evaluating the serviceability
capabilities provided by solutions as well as in the development of those solutions.  There have been a couple of
efforts within Cisco to apply the serviceability architecture in the development of a taxonomy for an internal support
community (Allen, 2013) and the evaluation of customer focused content for smart services products.

REFERENCES

Allen,  D.M.,  Schneider,  T.  (2013),  “The  Role  of  the  Community  in  a  Technical  Support  Community:  A  Case  Study”,  in
OCSC/HCII 2013, Ozak, A. and Zaphirirs, P. (Eds).  pp. 335-244. 

Human Side of Service Engineering  (2019)
https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2091-6


	1) Monitoring information is collected and analyzed by system or user,
	2) A failure or performance anomaly is identified,
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