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ABSTRACT

We  consider  two  new  methods  for  numerical  solution  of  a  complete  system  of  partial  differential  equations
describing the flow of a gas mixture in pipeline systems. The first method tracks Lagrangian particles as they move
together with the flow of transported fluid. When implementing this method, the flow parameters are found by
means of a difference scheme, and the distribution of mass fractions of components and enthalpy of matter along the
pipeline, by analyzing the motion of the Lagrangian particles. If we ignore the processes of diffusion, these particles
must preserve their composition. The energy equation without diffusion and heat conduction reduces to an ordinary
differential equation. The method proposed is free of artificial viscosity, because, for example, when considering the
equation of continuity of components, variations in their specific mass fractions at any point in space are related
only  to  physically  meaningful  processes,  namely,  to  the  inflow of  “new”  particles  (with  “new"  specific  mass
fractions of the components). The second method includes constructing spline functions along the space and time
coordinates of the computational mesh subject to the fulfillment of differential equations at its nodes. The use of
splines of high orders of approximation improves the accuracy of modeling.

Keywords:  Lagrangian Particle Method, Spline Scheme, Computer Gas Dynamics Simulator,  Multi-Component
Gas Mixture

INTRODUCTION

Publications [1–4] propose industry-oriented approaches to numerical modeling of operating conditions of complex
trunkline networks that transport process gases, liquids and multiphase fluids. These publications repeatedly pointed
at the necessity of improving the accuracy of simulations using the mathematical models proposed, first of all, to
enable  credible  simulation-aided  failure  analysis.  As  we  know,  one  of  the  central  accuracy  improvement
prerequisites is a science-based choice of appropriate techniques for the numerical analysis of the mathematical
models developed. The present paper discusses current versions of two efficient techniques of numerical analysis of
mathematical gas flow models for trunkline failure analysis. They have demonstrated their efficiency in practice as
applied to failure analysis of gas distribution networks of Gazprom’s subsidiaries.

DESCRIPTION OF THE FIRST NUMERICAL ANALYSIS 
METHOD FOR MATHEMATICAL MODELS OF GAS FLOW IN 
TRUNKLINE NETWORKS 

Let natural gas, which in the first approximation can be treated as a single-component gas with known physical and
mechanical  properties,  be transported through a network of branched pipelines  with absolutely stiff  rough heat
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conducting walls. 

To solve the problem, we use the following computational approach: we conventionally assume that each supplier
(in our case, “supplier” refers to a dispatching control station) introduces a unique grade of a single-component
chemically inert gas, the properties of which are exactly the same as those of natural gas, to the common collector.
In this case, as a result of non-isothermal mixing in the common collector and downstream pipelines, a multi-grade
homogeneous chemically inert gas mixture will form, possessing physical and mechanical properties of the initially
transported  natural  gas.  Its  grade  (or  component)  composition  will  vary  with  time  only  due  to  corresponding
variations in the gas supply conditions and parameters of gas consumption from the given pipeline system.

Based on the time variations of the gas mixture composition at the outlet boundary of the downstream pipeline
associated with a certain consumer, one can conclude, which particular suppliers influence the volume of gas supply
to the given consumer.  Constructing the target  functions of gas grade  shares  versus time reduces to numerical
modeling of non-steady-state non-isothermal homogeneous multi-component time-variant-composition gas mixture
transport through the given gas distribution network of long branched pipelines. Here, considering the natural gas
flow velocities in common collectors and downstream pipelines, one can ignore the influence of diffusion and heat
conductivity in the gas flow direction without loss of accuracy of simulation results [4]. 

One of the most promising approaches to credible numerical evaluation of space-time distribution of physical flow
parameters  in pipeline systems involves using the high-accuracy computer gas dynamic simulator to model the
performance of the system of interest (GDS) [1, 4].  The gas dynamics model of non-steady-state non-isothermal
turbulent flow (without diffusion and heat conductivity along the gas flow) of a multi-component homogeneous
mixture of viscous chemically inert  compressible gases through a branched system of long varied round cross-
section graded pipelines with absolutely stiff rough heat conducting walls, as implemented in the computational core
of GDS, can be represented as follows: 

– for each pipe (bend or non-branched segment of the common collector):

(1)

(2)

(3)

(4)

– for each junction (boundary sections of pipelines adjoining the junction):

(5)

(6)

(7)

(8)

(9)
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 (10)

(11)

(12)

– equations of state [5]: 

(13)

(14)

where  is the gas mixture density;  is the pipeline flow section area;  is the time (marching variable);  is the
spatial  coordinate along the pipeline axis;   is the projection of the vector of gas velocity averaged over the

pipeline cross section to the pipeline axis (on the assumption of developed flow turbulence);  is the mass

fraction of the -th component;  is the reduced density of the -th component (mass of the -th component

in unit volume of the mixture);  is the number of mixture components;  is the static gas mixture pressure; 

is the gravity acceleration modulus;  is the spatial coordinate of the point in the pipeline axis reckoned from an
arbitrary horizontal plane vertically upward (for trunklines, along the Earth radius);  is the Pythagorean number;

 is the hydraulic friction coefficient in the Darcy–Weisbach formula;   is the inner pipe radius;   is

specific (per unit mass) enthalpy of the mixture;  is specific (per unit volume) power of heat sources;  is the

gas mixture temperature;  is the number of pipes constituting the given junction;  is the subset of upstream
pipes of the given junction (upstream pipes with respect to the junction are the pipes, through which the gas enters

the junction);  is the subset of downstream pipes of the given junction (downstream pipes with respect to the

junction are the pipes, through which the gas leaves the junction);   is the static gas mixture pressure in the

given pipeline junction;  is the gas mixture temperature in the pipeline junction (i.e. in the inner space of the

junction);  is the mass fraction of the -th gas mixture component in the junction;  is the specific (per

unit mass) enthalpy of the gas mixture in the junction of interest. The function   characterizes the heat
exchange of the gas flow core through the boundary gas layer, pipe wall and insulation with the environment. It

expresses the total specific (per unit length) thermal flux along the perimeter  of the cross section having an area

of   from the transported gas to the environment (

 

means heat removal;   is the space-time

distribution of ambient temperature at the domain boundary). To indicate that a quantity belongs to the -th pipe,

we use a superscript  in parentheses  left  of the quantity,  for example:  .  The system of equations (1–14) is
supplemented  with  boundary  conditions  and  conjugation  conditions.  As  conjugation  conditions  we  can  define
boundary conditions simulating a complete rupture of the pipeline and/or its shutoff, operation of valves, etc.

To numerically solve the system of equations (1–14), the computational core of GDS usually employs grid methods.
Unfortunately, distribution trunkline networks contain a large number of pipe joints distributed on general collectors
extremely nonuniformly.  In our case,  this results in the necessity of considerable spatial  mesh refinement  and,
consequently,  in a  much longer runtime.  Such an increase  in the runtime is  intolerable  in simulations done to
provide computer-aided support of pipeline dipatcher decisions.
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To overcome this situation, the computational core of GDS employs a hybrid modification of the known integro-
interpolation method developed by A. N. Tikhonov and A.A. Samarsky  [6,  7] and  S.N. Pryalov’s Lagrangian
particle method [4]. The Lagrangian particle method is applied only to the equations of component continuity (2, 5,
7) and energy equations (4, 6, 7). Note that this Lagrangian particle method is essentially a dedicated modification of
the approach for solving hyperbolic partial differential equations by the well-known method of characteristics [8].
Let us consider the algorithm of applying this method to the component continuity equations. 

As we know, in a non-steady-state flow of a gas mixture through a branched network system, regions (moving
together with the gas flow) can occur, where concentrations of the mixture components can differ significantly from
those in neighbor regions. The use of difference schemes may lead to substantial front “smearing”. Given that the
difference schemes [6, 7] are conservative, the total mass of the mixture components in the pipeline network will not
vary with time. However, the values of component concentrations can decrease (or increase) unreasonably, and as a
result, the fluid of these materials will get non-physically “smeared” along the length of the pipeline. The idea of the
Lagrangian particle method in this case rests upon the known fact that if we separate a small particle of matter (a
small moving volume of matter), the continuity equations of the components will actually describe the motion of
this particle (with some set of components) with the gas flow. Accordingly,  it  is suggested that the component
continuity equation be solved by analyzing the motion of some set of particles in the gas flow. Flow parameters in
this case can be defined in any manner enabling simulation of a single-component gas flow (for example, by finite
differences). Owing to the way of introducing these particles, they are conventionally called Lagrangian.

The  general  algorithm  of  flow  modeling  without  multicomponent  gas  mixture  diffusion  in  branched  pipeline
systems using the Lagrangian particle method can be described as follows (S.N. Pryalov’s algorithm):

1. Initially,  along the  length  of  every  -th  pipeline   we “place”  a  set  of  Lagrangian  particles

ordered by increasing coordinates (with numbering ) in the amount of  at a distance on the
order of the length of a spatial mesh cell. A mandatory requirement is that the Lagrangian particles with numbers

 and  lie on the left (coordinate ) and on the right (coordinate , where

 is  the  length  of  the  -th  pipeline)  pipeline  boundaries,  respectively.  Specific  fractions  of  the

components for the particles are defined by approximation of initial conditions. Let  be the coordinate of the

-th Lagrangian particle belonging to the -th pipeline for the -th time step.

2. Gas dynamic variables of the gas mixture flow at the next time step  are calculated (using difference
equations approximating the gas dynamics equations (1–14), except for the component continuity equations (2, 5, 7)
and energy equations (4,  6,  7)).  The values  of  the specific  component fractions at  mesh nodes are  defined by
interpolation between these values for the Lagrangian particles adjacent to the mesh node.

3. For each -th Lagrangian particle of each -th pipeline, we update the coordinate for the new time step

 using the formula:

(15)

4. For each pipeline,  we delete the Lagrangian particles that leave the pipeline. At the same time, a new
particle is generated at the corresponding “outlet” boundary (the boundary, through which the gas leaves the pipe)

with specific component fractions   equal to the interpolated values of the particles closest to the
boundary: inside the pipe and outside the pipe (the latter particle is deleted with respect to the pipe). 

5. For each pipeline junction, specific component fractions are calculated by the following formula:

(16)

where  is the specific mass fraction of the -th component of the particle located at the outlet boundary
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of  the  upstream  pipeline;  ,   and   are  the  gas  mixture  density,  velocity  and  cross  section  area
corresponding to the outlet boundary of the upstream pipeline.
6. For each inlet boundary of each pipeline, a new Lagrangian particle is generated with specific component

fractions   corresponding to the boundary conditions (if the boundary is inlet for the given pipeline
system) or equal to the specific component fractions in the pipeline junction (if the boundary adjoins the junction).
At the next time step, if the distance between this particle and the following (downstream) particle is smaller than
the given distance (on the order of the spatial cell length), this particle is deleted. 

7. If  reaches the limiting value, the simulation is completed. Otherwise, we assume that  and
proceed to step 2.

Since the Lagrangian particle method for the energy equation is not related directly to the finite difference mesh
employed for solving the continuity and motion equations, this mesh has almost no effect on the accuracy of the
proposed method. Thus, high-accuracy calculated values of gas temperature are obtained without mesh refinement,
which speeds up the calculations significantly.

In addition, due to the absence of direct connection between the Lagrangian particle method and the finite difference
mesh, this method is free of the so-called artificial viscosity (see above and [6, 7]). As a result, the method makes it
possible to obtain solutions without artificial smoothing of temperature fronts, which corresponds to real physical
processes. This significantly increases the credibility of simulations compared to the use of difference schemes for
the energy equation.

DESCRIPTION OF THE SECOND NUMERICAL ANALYSIS 
METHOD FOR MATHEMATICAL MODELS OF GAS FLOW IN 
TRUNKLINE NETWORKS

To improve the credibility of numerical modeling of trunkline network operation, it is reasonable to use conservative
difference schemes. 

This section of the paper considers an approach that uses fully conservative spline schemes for solving a complete
system of gas dynamics equations for the case of a model describing the flow of a single-component gas in a
trunkline.  The consequence of (1–14) for an unbranched trunkline,  considering the adopted assumptions,  is  the
system of equations [4]:

(17)

(18)

(19)

(20)

(21)

where  is the specific (per unit mass) internal energy.

As we know, for systems of nonlinear partial differential equations (to which the system (17–21) belongs), in the
general case, it is impossible to obtain an analytical solution. There exist various methods for constructing difference
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counterparts  of  original  differential  equations  that  enable  obtaining  difference  equations  possessing  different
properties. To produce a credible solution, the difference counterpart (the difference scheme) should be convergent
[6, 7]. This property holds true if the difference scheme possesses approximation and robustness. In addition, the
scheme should preferably be conservative and have an increased order of approximation (these properties allow the
scheme to produce more accurate numerical solutions). 

This  section of  the paper  proposes  employing spline  schemes  for  solving a  complete  system of gas  dynamics
differential equations [4]. This method involves searching for target values of the gas dynamic parameters at the
nodes of   the space-time mesh such that the gas dynamic differential equations at the difference mesh nodes are
satisfied,  when  approximating  the  distributions  of  these  parameters  by  splines  (along  the  space  and  time
coordinates). 

This method possesses an increased order of approximation; it is proven to be fully conservative, which provides
higher credibility of process modeling when analyzing the parameters of gas transport in trunklines. On the other
hand, spline schemes are implicit, which makes them more robust compared to explicit and semi-implicit schemes. 

Let  us begin considering this type of schemes from the simplest case,  when splines are used to solve ordinary
differential equations (see, e.g., [9]). 

Let us discuss application of a spline scheme for solving the system (17–21). Let the spline order be   with

respect to the time coordinate and  with respect to the spatial coordinate. The spline scheme for solving (1) can
then be represented in the form proposed by S.N. Pryalov [4]:

(22a)

(22b)

(22c)

(22d)

(22e)

The spline scheme (22) approximates a nondivergent form of mass, momentum and energy conservation laws (17–
21).  The  differential  forms  of  these  laws  are  satisfied at  the  nodes of  the  space-time mesh.  Accordingly,  the
divergent forms of the principal conservation laws are also satisfied at the mesh nodes. If the spline order ensures
the continuity and differentiability of the functions under the derivative sign in (17–21) (which requires that the
conditions  ,   hold), then there exists a divergent discrete counterpart for each divergent derivative.
Consequently, the spline scheme is also conservative for systems of partial differential equations.

As the  conservation  laws  are  satisfied  in  the  differential  form at  the  mesh  nodes,  it  follows  that  all  possible
representations of  a given system are satisfied at  these nodes  (for  example,  equations for  kinetic  energy,  total
energy, entropy etc.). The existence of divergent discrete counterparts of all the divergent differential derivatives in
this case ensures that the spline scheme is not only conservative but completely conservative [6, 7].
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This conclusion is extended similarly to the continuum mechanics equations of any dimensionality. Thus, we show
that a spline scheme is completely conservative.  This enables  modeling gas and hydrodynamics processes  with
higher credibility and accuracy due to the correct modeling of all possible conservation laws. On the other hand,
spline schemes are implicit, which makes them more robust compared to explicit and semi-implicit schemes [6, 7].
Increasing  the  order  of  the  splines  used  makes  it  possible to  increase  the order  of  approximation of  gas-  and
hydrodynamic equations, which also improves the accuracy of simulations. 

EXAMPLES OF PRODUCTION SIMULATIONS

Efficiency  of  the  method of  numerical  recovery  of  gas  flows  in  trunkline systems proposed  in  the  paper  was
demonstrated  in  2010–2014 in production simulations at  GAZPROM Mezhregiongaz  Moscow LLC within the
Alfargus/Mosregiongaz Computer System (Fig. 1).

Figure 1. Example of the Alfargus/Mosregiongaz Computer System application in the control room of GAZPROM
Mezhregiongaz Moscow LLC

The method was used for  numerical  recovery  of  the  flow of natural  gas  delivered  (from a single supplier)  to
consumers through seven branches of the Moscow Gas Ring (MGR). MGR has a total length of over 200 km and
more than 130 consumer branches. The flow was recovered at 106 IPs, which were relatively uniformly distributed
over the gas pipeline ring. 

The transport flow is transient nonisothermal gas flow. The example of flow diagram (i.e. recovered flow direction
and numerical  estimates  of  volumetric  flow rate  of  natural  gas  [dimension:  thousand cubic  meters  per  day] in
accordance with color gradation) in the South-East MRG sector (temporal section) was shown on Fig. 2. In table on
the right of Fig. 2 one can see quantitative estimates of gas flow rate distribution [column 2, dimension: thousand
standard cubic meters per day] and gas pressure [column 3, dimension: gauge atmospheres] for recovered flows in
specific  branches  in  the  South-East  MRG  sector  (temporal  section).  In  the  first  column  of  the  table  under
consideration description of branches are given in topographical map reference. 

The example of diagram correlation of time history of calculated and measured estimates of pressure and mass flow
rates for one from the IPs, which is used in MGR (gas flow temperature was measured with a poor accuracy and
long time intervals and was not suitable for comparative analysis) was shown on Fig. 3. It should be noted that
measurement results underwent preliminary verification and smoothing. The recovered gas flow parameters were
used to analyze the performance of MGR, and to detect and localize the sources of discrepancy in estimated volumes
of gas supply through MGR.

Earlier versions of the flow recovery method were used to investigate trunkline accidents and to train gas pipeline
operators in efficient pipeline control under conditions as close as possible to real operation of gas transmission and
delivery systems using high-accuracy computer simulators.
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Figure 2. Example of flow diagram in the South-East MRG sector (temporal section)

 

a)                                                                               b)
Figure 3: Example of curve correlation of calculated and measured pressure history (a) and mass flow rate (b) for one from the

IPs used in MGR 

CONCLUSIONS

In 2008–2014 these methods demonstrated their efficiency as applied to production simulations done to validate
discrepancy mechanisms in natural  gas supply through the Moscow circular  gas trunkline.  Application of these
methods in practice does not require any special high-performance computers.
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