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ABSTRACT

The  paper  describes  a  basic  approach  for  the  establishment  of  representative  test  persons  when  performing
accommodation analyses  and wanting to simultaneously consider normal variation in three variables.  The main
application is for defining a number of different manikins when performing ergonomics simulations for boundary
case  based accommodation analyses  using digital  human modelling tools.  The method is  also applicable  when
wanting to select representative people to be involved in user trials or to get direct design data. One objective is that
the  proposed  method  shall  support  inclusive  design  in  that  it  is  easy  to  adopt  by  non-experts  in  multivariate
accommodation analyses, and accordingly reduce the amount of unsuitable univariate accommodation analyses. The
paper introduces the reader to the area of interest, making links to previous research and current problems. The
approach for the development of the basic method is explained. The confidence ellipse method is used for defining
appropriate  boundary manikins according to three selected key variables and desired accommodation level.  The
paper includes two examples that illustrate the method and compare the method to an alternative method.
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INTRODUCTION

Several methods have been developed for the consideration of anthropometric diversity in design. One example is
A-CADRE (Bittner, 2000); a description of 17 body measurement combinations. The collection of such boundary
cases  aims to characterise the anthropometric variation among users in that each case represents an extreme but
likely measurement combination (HFES 300 Committee, 2004). The concept behind the boundary case method is
that, if the design will fit the boundary cases, people with less extreme body measurement combinations will be
catered for by the design as well (Robinette, 2012). Meindl et al. (1993) describe a similar approach for identifying
boundary cases using principle component analysis (PCA). PCA can be used to reduce the dimensionality (e.g. from
6  to  2  dimensions)  but  still  represent  most  of  the  variance  in  the  data  (Jolliffe,  2002).  The  boundary  case
methodology procedure is described and evaluated in (Brolin et al., 2012a) and (Brolin et al., 2012b), including a
general mathematical description of how to define boundary cases for any number of dimensions.
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Design is more and more being performed by the use of computer support, where objects are designed in virtual
worlds using computer aided design and engineering (CAD/CAE) tools. In line with this, digital human modelling
(DHM) tools have been developed to support designers to consider ergonomic issues in virtual design processes
(Duffy, 2009). The DHM tools typically facilitate the creation of human models of almost any sizes, and it becomes
a task of the designer to decide the anthropometry of the human models to use in the design task.

Using methods such as the boundary case method for the consideration of anthropometric diversity when using
DHM tools  is  likely to  gain the  ergonomic  qualities  of  the  object  being designed,  be  it  products,  vehicles  or
workstations. Still, a study in Swedish vehicle manufacturing companies gave that it was common to use only a few
human models as virtual test persons when designing workstations or evaluating manual work (Bertilsson et al.,
2010). The study gave that, typically, a small female and a large male, according to stature, were considered as
sufficient when performing ergonomics evaluations using DHM tools. This corresponds with findings reported in
Robinette (2012). Such an approach mean that one key measurement is used (i.e.  stature) and that two boundary
cases are used (i.e.  small female and  large male). The study by Bertilsson et al. (2010) also gave that a common
argument  for  this  basic  approach  was  the  time  needed  for  each  extra  virtual  test  person  to  be  included  in  a
simulation, and that this extra time was not considered worth the possible increase in accuracy in assessing and
meeting  targeted  accommodation  levels.  Also,  the  study  gave  that  the  comprehension  of  the  complexity  of
anthropometric diversity in design, and ways to deal with it, was rather scarce, which may also be a reason for the
basic approach utilized in the industries studied. However, in essence this is no news and similar concerns have been
highlighted for many years (Daniels, 1952; Roebuck et al., 1975; Ziolek and Wawrow, 2004; Robinette, 2012).

There may be many reasons for this gap in best practice, reported in literature by the research society, and observed
industry practice, but traditions of how to perform DHM based simulations, and lack of DHM tool functionality and
usability, are believed to be important causes. So, the question rises of how to support improved practice when using
DHM tools in virtual design processes to consider anthropometric diversity. One way would be “to make it easier to
do it right”. Indeed, DHM tools’ ability to, in theory at least, model any existing anthropometric configuration ought
to be utilized when performing simulations of human-product interactions. One step in the direction to aid designers
to consider anthropometric diversity is the approach taken when developing the IMMA digital human modelling
software (Hanson et al., 2012), where the default manner when performing a simulation includes the definition of a
family of  anthropometrically  representative  virtual  test  persons (a  manikin family that  represents  variance  of  a
number of key measurements) followed by an automatic batch simulation using all these manikins.

Still, as this paper will show, one can consider three human body dimensions simultaneously by doing some basic
mathematical  treatments of the anthropometric data of the targeted user group. This approach is assumed to be
applicable for any DHM tool being used, in the way that the method calculates extreme, but realistic, dimensions of
three selected key measurements, in turn acting as input data for regression equations in the DHM tool, used to
define  the  manikin’s  other  measurements.  This  as  a  basic  but  important  step  from using  the  univariate  (one-
dimensional) approach, which in most design purposes is poor in representing anthropometric diversity. In using the
trivariate (three-dimensional) approach one can define a number of boundary manikins that concurrently represent
variance in three key measurements, for example stature, sitting height and waist circumference, or shoulder-elbow
length,  forearm-hand  length and  forearm  circumference,  flexed etc.  When  selecting  key  measurements  it  is
recommended to choose measurements that are critical in relation to the design task at hand, and strive for low
correlation of these measurements, as not to comprise redundant information (Robinette, 2012). As an example, the
selection of manikins in the DHM tool RAMSIS is based on the knowledge that the definition of the characterising
property of length, proportion (ratio of sitting height over body height) and corpulence of an individual is sufficient
to  give an  good prognosis  of  all  other  body dimensions for  this  person  (Speyer,  1996;  Bubb et  al.,  2006).  In
RAMSIS these properties are defined by the three key measurements stature, sitting height and waist circumference.

As noted, the approach defines boundary cases, and for some design tasks it might be relevant to define distributed
cases  instead,  or as well.  These categories  of cases  are further  described in (HFES 300 Committee,  2004) and
(Robinette, 2012). This paper develops the descriptions in (Högberg et al., 2011) and aims here to describe how to
calculate boundary cases for trivariate normal distributions. The paper takes a pragmatic standpoint, directing its
message towards practitioners and students using DHM tools for design purposes. The method can also be applied
when wanting to select representative people to be involved in physical user trials or to get direct design data.
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METHOD

The confidence ellipse method is used for defining appropriate boundary manikins according to three selected key
dimensions and a desired accommodation level, here represented by the confidence region. Assuming that all three
dimensions are normally distributed, which is appropriate in most cases (Pheasant and Haslegrave, 2006), general
statistical  methods  are  applied  to  analyse  the  data  (e.g.  Sokal  and  Rohlf,  1995;  Brandt,  1999).  The  ANSUR
anthropometric  data is  used in the examples  (Gordon et  al.,  1989).  This  data is  dated and limited in  terms of
representing “average people” (in that it is based on army personnel measurements), but considered relevant to use
for showing principles in that it covers data of a large set of measurements (131) and individuals (1774 men and
2208 women). The presented method is applicable using any well founded anthropometric data though. To illustrate
the characteristics of the data, Figure 1 shows a scatter matrix of the ANSUR data for stature and weight for male
population. Figure 1 shows two dimensions for easy interpretation,  while the following descriptions will  cover
operations for three dimensions.

Figure 1: Scatter plot matrix of stature (mm) and weight (kg) for ANSUR data for male population.

The mathematical procedure follows the descriptions in (Brolin et al., 2012a) and (Brolin et al., 2012b), where input
data are:

Mean values: μ= [μ1 μ2 μ3 ], Standard deviations: σ=[σ 1 σ2 σ3 ], 

Correlation matrix: ρ=[
1 ρ12 ρ13

ρ21 1 ρ23

ρ31 ρ32 1 ], and

Desired level of accommodation: P, where:0<P<1, e.g. P=0.95 for a 95% accommodation objective.

These  input  data  are  used  to  calculate  the  three  dimensional  confidence  region,  based  on  the  definition  of
eigenvalues, eigenvectors and scaling the ellipsoid, as described in (Brolin et al., 2012a). Axis cases and box cases
are then defined on the boundary of the ellipsoid as described in (Brolin et al., 2012a; Brolin et al., 2012b).

The outcomes from the described method is illustrated and compared to an alternative method in two examples.
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RESULTS

A basic demonstrator was built by entering the equations into regular spreadsheet software (Microsoft Excel 2010)
without  any  plugins  required;  making  it  easy  to  calculate  and  illustrate  results,  and  simple  to  share.  The
demonstrator is based on using the female ANSUR anthropometric data (Gordon et al., 1989) and the user just needs
to specify which three of the 131 available body measurements to consider and set a desired accommodation level.
The spreadsheet  draws the associated data from the database,  determines the correlation coefficients,  solves the
calculations algebraically, defines the cases and creates the diagrams automatically. This facilitates easy testing of
different measurement combinations and interpretation of outcomes. Output data is presented as  value (in mm or
kg), z-score (standard score) and percentile for the three selected measurements for 15 boundary cases, representing:

 1 centre case (the average value of the trivariate distribution)
 6 axis cases (located at the axis end of each eigenvector; where the axis meets the confidence ellipsoid)
 8 box cases (located at the corners of the cuboid that spans the largest volume inside the ellipsoid)

The output diagrams show, in the three orthogonal 2D-projections, the scatter plot (i.e. data on individuals in the
ANSUR database,  to  show the  relation  between  the  artificially  drawn  cases  and  real  people),  the  confidence
ellipsoid and the location of all 15 cases. The cases are identified, and the diagrams are plotted, in the standardised
space. This procedure is appropriate when comparing different normal distributions (Glenberg and Andrzejewski,
2007) and gives each distribution the same significance in the calculations.

Example 1
The first case illustrates the functionality of the demonstrator. The three measurements stature, sitting height and 
shoulder-elbow length are selected and the desired accommodation level is set to 90%. Figure 2 shows the input area
of the spreadsheet where the white areas are where the user enters desired values. Each measurement has a unique 
number which is given when inspecting the anthropometric database within the spreadsheet. In the grey cells data 
for average values, standard deviations and the correlations matrix are given for the selection of measurements. As 
seen, in this case the recommendation to select measurements with low correlations is not followed. Some of the 
correlations are above 0.7 which is considered a high correlation in this context. Hence the result is a rather narrow 
ellipsoid (Figure 4). This selection of measurements is however made to facilitate comparisons with results in 
(Brolin et al., 2012a).

Figure 2: Input area. White cells are entered by the user and grey cells are given automatically.

Figure 3 shows the output area with data for the 14 boundary cases (6 axis and 8 box) and the average case, plus the
minimum and maximum value for each measurements among the 15 cases. 

Applied Digital Human Modeling & Simulation (2020)

Input Enter measurement numbers and accommodation objective into white cells

Measurement number 99 93 91
Name STATURE SITTING_HT SHOULDER_ELBOW_LNTH
Unit mm mm mm

Average (µ) 1629 852 336
Standard deviation (σ) 63.6 34.9 17.4

Correlation matrix (ρ) STATURE SITTING_HT SHOULDER_ELBOW_LNTH
STATURE 1 0.755 0.798

SITTING_HT 0.755 1 0.420
SHOULDER_ELBOW_LNTH 0.798 0.420 1

Accomodation objective 90 %
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Figure 3: Output area. Data for the 15 cases and min and max values.

Figure 4 shows the corresponding ellipsoid in standardised space and the 15 cases shown as dots (centre and axis
cases in red dots and box cases in grey dots). The spreadsheet gives the three orthogonal projections. The scatter plot
illustrates how approximately 10% of the dots (individuals) are located outside the ellipsoid, consistent with the
selected accommodation objective of 90%.

Figure 4: The confidence ellipsoid in the 3 orthogonal projections and the 15 cases (scale in standard scores).

Applied Digital Human Modeling & Simulation (2020)

Output Case data

Centre and boundary cases STATURE SITTING_HT SHOULDER_ELBOW_LNTH
Value Z-core Percentile Value Z-core Percentile Value Z-core Percentile

1 (centre) 1629 0 50.00 852 0 50.00 336 0 50.00
2 (axis) 1784 2.43 99.25 923 2.05 97.98 372 2.11 98.25
3 (axis) 1475 -2.43 0.75 780 -2.05 2.02 299 -2.11 1.75
4 (axis) 1592 -0.58 28.09 863 0.31 62.30 342 0.36 64.22
5 (axis) 1666 0.58 71.91 841 -0.31 37.70 329 -0.36 35.78
6 (axis) 1633 0.06 52.26 803 -1.40 8.11 358 1.29 90.20
7 (axis) 1626 -0.06 47.74 901 1.40 91.89 313 -1.29 9.80
8 (box) 1699 1.10 86.47 871 0.56 71.12 374 2.17 98.52
9 (box) 1521 -1.71 4.40 789 -1.81 3.52 331 -0.26 39.71
10 (box) 1563 -1.04 15.01 776 -2.17 1.50 324 -0.68 24.78
11 (box) 1742 1.77 96.18 859 0.20 57.74 366 1.75 96.03
12 (box) 1695 1.04 84.99 928 2.17 98.50 348 0.68 75.22
13 (box) 1517 -1.77 3.82 845 -0.20 42.26 305 -1.75 3.97
14 (box) 1559 -1.10 13.53 833 -0.56 28.88 298 -2.17 1.48
15 (box) 1738 1.71 95.60 915 1.81 96.48 340 0.26 60.29

Max 1784 2.43 99.25 928 2.17 98.50 374 2.17 98.52
Min 1475 -2.43 0.75 776 -2.17 1.50 298 -2.17 1.48
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To illustrate, entering the values of stature, sitting height and shoulder-elbow length (Figure 3) in the DHM tool Jack
7.1  (Siemens,  2011)  gives  manikins  as  shown  in  Figure  5,  here  called  a  manikin  family.  All  other  manikin
measurements  are  regressed  in  Jack  from  the  entered  values.  Hence,  in  this  case  these  manikins  represent  a
suggested virtual test group to use for design purposes in ergonomics simulations. The designer may still choose a
subset of the manikins if a fewer number of test manikins is wanted, e.g. the 6 axis cases or the 8 box cases.

modelled in Jack.

Figure 5: Manikin family of 15 members (1 average, 6 axis and 8 box cases) modelled in Jack.

In Brolin et al. (2012a) the 6 axis cases in the manikin family (Figure 5, manikins 2-7) are applied to a task of 
extracting values of required adjustment ranges in the design of an office workplace, including a comparison of the 
outcomes from using four alternative ways to define boundary cases that represent anthropometric diversity. The 
study in Brolin et al. (2012a) shows that different ways of establishing representative virtual test persons influence 
the predicted design dimensions related to meeting accommodation objectives.

Example 2
For some design tasks it is possible to conclude that, for certain dimensions, it is enough to use the largest or 
smallest boundary case for getting data for the design task. An example of this is given in Robinette (2012), in the 
context of seated workstation design, where the definition of the minimum width of a seat only requires a large case 
related to hip-breadth, sitting to get design data. In the example in Robinette (2012), three critical dimensions are 
identified: eye-height, sitting, buttock-knee length and hip-breadth, sitting, and the desired accommodation is set to 
90%. The method illustrated in Robinette (2012) is based on meeting the 90% accommodation objective by creating 
four boundary box cases using a bivariate (two dimensional) 90% confidence ellipsoid for eye-height, sitting and 
buttock-knee length and selecting the maximum value of hip-breadth, sitting. This is a sensible approach. However, 
sometimes it may be hard for a designer to know how and when to draw such conclusions of how to handle key 
dimensions. Of that reason, the method presented in Robinette (2012) (here called Approach 1) is compared with the
trivariate approach presented in this paper (here called Approach 2). The objective is to compare the different case 
dimensions from using the two approaches of meeting the accommodation objective (90% in this case) for three key 
measurements. Female anthropometric data from ANSUR data is used in this example. Table 1 gives values (in mm 
and percentile) for dimensions of the 4 box cases using Approach 1 (2D confidence ellipse + max value for third 
dimension) and Table 2 the values for the 8 box cases using Approach 2 (3D confidence ellipsoid).

Table 1: Dimensions for the 4 box cases using Approach 1.

Cases 1 2 3 4 Min Max

eye-
height,
sitting

mm 750 669 728 809 669 809

z-score 0.32 -2.12 -0.32 2.12 -2.12 2.12

%-ile 62.5 1.7 37.5 98.3 1.7 98.3

buttock-
knee

length

mm 652 580 526 598 526 652

z-score 2.12 -0.32 -2.12 0.32 -2.12 2.12

%-ile 98.3 37.5 1.7 62.5 1.7 98.3

hip-
breadth,
sitting

mm 493 493 493 493 493 493

z-score 3.98 3.98 3.98 3.98 3.98 3.98

%-ile >99.9 >99.9 >99.9 >99.9 >99.9 >99.9
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Table 2: Dimensions for the 8 box cases using Approach 2.

Cases 1 2 3 4 5 6 7 8 Min Max

eye-
height,
sitting

mm 732 666 676 742 801 736 745 811 666 811

z-score -0.20 -2.17 -1.89 0.09 1.89 -0.09 0.20 2.17 -2.17 2.17

%-ile 42.1 1.5 3.0 53.5 97.0 46.5 57.9 98.5 1.5 98.5

buttock-
knee

length

mm 620 552 593 660 585 518 558 625 518 660

z-score 1.03 -1.23 0.13 2.39 -0.13 -2.39 -1.03 1.23 -2.39 2.39

%-ile 85.0 10.9 55.1 99.2 44.9 0.8 15.0 89.1 0.8 99.2

hip-
breadth
, sitting

mm 446 382 340 404 429 365 323 387 323 446

z-score 2.27 -0.08 -1.64 0.72 1.64 -0.72 -2.27 0.08 -2.27 2.27

%-ile 98.8 46.7 5.1 76.3 94.9 23.7 1.2 53.3 1.2 98.8

Figure 6: Ellipse and 4 cases (Approach 1, left), Ellipsoid and 8 box cases (Approach 2, right) (scale in standard scores).

By studying the values in Table 1 and the left image in Figure 6 it is possible to see how the equations spread out the
cases on the boundary of the ellipse. Correspondingly, by studying the values in Table 2 and the right image in 
Figure 6 it is possible to see how the equations spread out the cases on the boundary of the ellipsoid. Table 3 shows 
how the box cases in Table 1and Table 2 represent types of combinations of eye-height, sitting, buttock-knee length 
and hip-breadth, sitting stated in the approximate terms: Extremely large (EL) (seeing z>3 as extremely large), 
Large (L), Average (A) (seeing -1.2<z<1.2 as average) and Small (S).

Table 3: Combinations of approximate types per approach.

Approach 1 Approach 2
Cases 1 2 3 4 1 2 3 4 5 6 7 8
eye-

height,
sitting

A S A L A S S A L A A L

eye-
height,
sitting

L A S A A S A L A S A L

eye-
height,
sitting

EL EL EL EL L A S A L A S A

Applied Digital Human Modeling & Simulation (2020)
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Table 4 shows difference between maximum and minimum value per dimension for each approach, in order to 
illustrate in what way the two different approaches represent the range per dimension (assuming Approach 1 
accommodates from min to max value in the ANSUR database for hip-breadth, sitting).

Table 4: Range per dimension per approach.

Range Approach 1 Approach 2

eye-height,
sitting

mm 140 145
z-score 4.24 4.34
%-ile 96.6 97.0

buttock-knee
length

mm 126 142
z-score 4.24 4.78
%-ile 96.6 98.4

hip-breadth,
sitting

mm 185 123
z-score 6.79 4.54
%-ile 99.7 97.6

PeopleSize 94 94
BodyBuilder 93 93

The probability levels that the min and max values in Table 1 and 2 answer to, according to two separate 
anthropometric software, was calculated by using the multidimensional analysis functionality in: 1) PeopleSize 2008
Professional Version 2.02 (PeopleSize, 2009) and 2) RAMSIS BodyBuilder Version 1.4-3.8.31 (Human-Solutions, 
2010) (Table 4). For the BodyBuilder calculation sitting height was used rather than eye-height, sitting due to non-
availability of the measurement in the software, but since these measurements show high correlation (ρ=0.997) the 
value of approximate level of combined accommodation is argued to be legitimate. Correspondingly, hip-breadth 
was used rather than hip-breadth, sitting (ρ=0.898). Table 4 shows the same value for Approach 1 and Approach 2 
from PeopleSize and BodyBuilder respectively, which indicates that both Approach 1 and Approach 2 offer a 
similar level of accommodation, which is as expected since both approaches claim to accommodate the same 
proportion of the population, i.e. 90%. The reasons why both PeopleSize and BodyBuilder indicates a higher level of
accommodation (i.e. 94% and 93%) is hard explain since it is not clear how the two software do the calculations and
what correlation data they use. However, by the means of a script that counted the percentage of the 2208 subjects 
that were encapsulated by the 90% ellipsoid gave that 90.53% were encapsulated in the setup in Example 2 (and, to 
compare, 90.22% in Example 1), indicating that the mathematical methodology works well.

CONCLUSIONS AND DISCUSSION

Table 4 shows how the trivariate method (Approach 2) represent a more even range per measurement compared to 
Approach 1, as expected since Approach 1 is based on assuming the maximum value for one dimension. Using 
maximum value is sensible since it should mean that all people would be accommodated. Still, as design is a 
complicated optimisation task of finding the best overall solution that meets many, often conflicting, requirements, 
the objective to accommodate all users (though in Approach 1 only related to one certain dimension) may be a costly
attempt, or causing sub-optimisation since it could lead to drawbacks related to other product qualities. It is argued 
that the trivariate approach (Approach 2) offers a more controlled way to meet the accommodation objective 
compared to Approach 1 in this example. Also, the suggested manikin family of Approach 2 is a more design task 
neutral, hence more general, approach than Approach 1 in that the family better represents the actual variation 
within the population compared to the cases suggested by Approach 1, which was devised to suit a certain design 
task. This is obvious by looking at how the two methods differ in representing variation in hip-breadth, sitting. This 
highlights a fundamental issue of appropriate approach when defining cases and get design data. Should the cases be
selected according to the design task, or rather selected to represent the general variation within a population? The 
latter would resemble a situation when a company has established a well-founded test group that is always recruited 
to test products being designed, or benchmarked, regardless of type of product or issue to assess. This way of 
reasoning can also be applied when using DHM tools, where a company may create a manikin family that always 
will act as their standard virtual test group. 

An option would be to mix Approach 1 and 2, i.e. to use a three dimensional confidence ellipsoid and one 
minimum/maximum value, and thereby consider four dimensions in the design. Another approach would be to use 
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DHM tools to perform large numbers of ergonomics evaluations associated to a specific design task, e.g. related to 
issues like fit, reach, and comfort, where the software identify which cases within a population (on the boundary and
distributed) that experience the largest problems or draw the most extreme design data. Such an advanced method, 
called Adaptive Ergonomic Search (AES), is presented in Mårdberg et al. (2012). 

This paper describes a more basic approach compared to AES and PCA based methods, but argues that the proposed
trivariate method is advantageous compared to approaches based on the use of univariate percentile data in design,
and an important step towards enhanced accuracy in meeting desired levels of accommodation, e.g. when using
DHM tools for the design of products and workplaces. This paper presents a way to calculate boundary cases on a
three dimensional confidence ellipsoid by the means of regular spreadsheet software, providing a basic, low-cost and
practical tool. Most computer users have access to regular spreadsheet software (such as MS Excel) making the file
easy to distribute, e.g. to practitioners and students that do design where there is a need for the consideration of
anthropometric  diversity,  which  indeed  is  common in  design  for  creating  solutions  that  fit  targeted  users.  An
obvious restriction in the demonstrator tool is that only female anthropometrics is considered, and there are plans to
add the option to also consider male data. The three dimensional approach is basic compared to more advanced
methods, but still an important step forward compared to using the univariate approach for multidimensional design
problems. Also, if the three key dimensions are selected thoughtfully, a good prediction of an individual’s all other
measurements  can be drawn (Speyer,  1996;  Bubb et  al.,  2006).  Another  advantage  with the three  dimensional
approach, where each dimension represent an actual body dimension, is that it is easier to interpret the ellipsoid and
the location of the cases,  compared to a hyper-ellipsoid of four dimensions of more. Also, having the ellipsoid
plotted in the space of real dimensions makes it easier to interpret the ellipsoid and its cases, compared to using PCA
which converts and transforms the data to a new coordinate system based on principal components.

Having the ellipsoid plotted together with a scatter plot of real individuals is argued to be important in order to
illustrate to the tool user how the ellipsoid encapsulates approximately the percentage of the dots set by the value of
the accommodation objective. Also, the scatter plot is argued to be important to highlight that people that are located
outside of the ellipsoid by the set accommodation objective are likely to be excluded by the final design. Hopefully
this  will  trigger  discussions within the design team, and  with managers,  of  appropriate  accommodation levels.
Setting an accommodation level  of 90% is common, but still  that  means that  1 of  10 persons is  not explicitly
considered in the design. Porter and Porter (2001) consider the 90% accommodation objective as somewhat out-of-
date given the concern for quality of life, high productivity and safety. Aiming for higher accommodation levels
complies with the concept of inclusive design, which has positive implications both on life-quality for more people
but also opens opportunities to expand markets by satisfying more users by the design (Waller et al., 2013).  The
reasoning behind the inclusive design approach is that designers should try to include users rather than exclude users
when designing products, systems and environments; it encourages an attitude of “what if we design like this, then
we would include these user groups as well, rather than exclude them”. The issue of when someone actually is
accommodated  or not by a design is however often not so precise,  but  rather  a multifaceted  “grey area  issue”
(Clarkson et al., 2013). Hence, accommodation when interacting with a product or workstation is often within a
range  that  can  be  portrayed:  from  works  well -  being  frustrated -  having  difficulty to  exclusion (not  able  to
use/perform task/interact). Indeed, the approach presented in this paper does not claim to ensure that someone with
anthropometry that would be located within the ellipsoid would be accommodated and that someone outside the
ellipsoid would be non-accommodated.  Firstly, there may be other measurements  than the three measurements,
selected on the assumption that they would limit accommodation, which will cause exclusion. Secondly, there may
be links between human anthropometry and accommodation of using an object that is not captured when using this
method, which would rather be captured by observing digital human models or real people interacting with the
object being designed. It may, of course, also be other issues than anthropometry that cause exclusion. Still the
presented method is claimed to be a substantial improvement from the common univariate 5 percentile female to 95
percentile male approach, in that the method supports the consideration of multidimensional anthropometry issues in
design.  Porter et al. (2002) argues that, if user groups are to be excluded of one reason or another, that outcome
ought  to  be  the  result  of  a  conscious  design  decision  rather  than  for  example  an  effect  of  poor  information,
knowledge or consideration within the design team, and that designers need support, e.g. tools and methods, to
enable this. The method presented in this paper is a contribution towards that call.
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