
Applied Human Factors and Ergonomics International

The Systems Modeling Language and its
Application to Railway Signaling Systems

Andy Lapping and Kerim Cakmak

Rational Software
IBM

Systems and Software Engineering Solutions

ABSTRACT

The Object Management Group (OMG) Systems Modeling Language (SysML) defines a general-purpose language
for the modeling of systems engineering products. It supports activities across the lifecycle such as specification,
analysis, design, verification and validation. Whilst widely used in domains such as Aerospace and Defense, the
language has been less used in Railway Signaling Systems. However Railway Signaling Systems are complex,
safety critical systems and would benefit greatly from the application of SysML, as this paper intends to show.

Keywords: System Modeling Language, Model Based Systems Engineering, Model Simulation, System Behavioral
Modeling, Harmony for Systems Engineering, Requirements Engineering

INTRODUCTION

Railway Signaling Systems are inherently complex with many moving parts and safety interlocks and as such can be
difficult to understand, implement and test. More and more of the innovation seen in the rail industry is driven by
software, whereas historically these systems have been relay driven or even purely mechanical. With this increase in
software comes even more complexity. SysML has many applications in such systems, from real implementation –
that is taking a set of Requirements and driving them through specification, implementation and test – through to
purely educational purposes. Many of the concepts in Standard Signaling Principles can be somewhat esoteric and
difficult to grasp. I recall one conference in particular some years ago when I used a SysML model to explain the
principles of Absolute Block Working in ten minutes. After the presentation an engineer approached me and
commented that, until that day, he had never understood Absolute Block. Such is the power of graphical modeling –
and execution of those models.

The benefits of modeling are many. Models enable us to manage complexity of systems by simplifying and
abstracting the essential aspects of a system and thus increase our understanding of it. Models help in
communicating ideas – the old adage of a picture painting a thousand words is never truer. Can you imagine
describing a wiring diagram without the graphical representations? Model execution allows a system design to be
verified and validated, uncovering new Requirements and reducing uncertainty and risk. Traceability is also a key
aspect of safety critical designs, and models allow you to document the design decisions and the justifications for
those decisions.

However it should be noted that SysML is merely a language, it is entirely possible to build ‘bad’ models –

Computing, Software, and Systems Engineering (2018)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2096-1

Applied Human Factors and Ergonomics International

incorrect, incomplete or just incomprehensible. To ensure the integrity of the model, a robust workflow should be
used. Which parts of the language should be used? for what purpose? when should they be employed? Having a
consistent and coherent answer to these questions ensures that related models are built in the same way – and that
those models are ‘good’ models. This paper presents an example system – modeled following the IBM Rational Best
Practices for Model Based Systems Engineering – informally known as Harmony-SE. This process and
recommended workflow is described in the version 4.1 of the IBM Rational Harmony Deskbook (ref 1), see figure 1
– which should be referred to as the complete reference during this paper.

Figure 1: Rational Integrated Systems/Embedded Software Development Process Harmony

OVERVIEW OF HARMONY-SE WORKFLOW

The workflow is broken down into three main phases.

Requirements Analysis

In Requirements Analysis, stakeholder requirements are translated into a coherent set of system requirements –
divided into functional (what it should do) and quality of service (how well it should do it). It should be noted that
this step is often performed outside of the model – usually in a formal requirements management tool such as IBM
Rational DOORS. The system requirements are then grouped into Use Cases – which form the starting point of the
model.

Functional Analysis

Functional Analysis focuses on the identification of system functionality – that is the key functions of the system
and the order and conditions in which they occur. This phase is performed iteratively and incrementally, as each Use

Computing, Software, and Systems Engineering (2018)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2096-1

Applied Human Factors and Ergonomics International

Case becomes a Use Case Model that may be executed to verify and validate the requirements with which it was
associated during the Requirements Analysis phase. Use Case models allow us to confirm a common understanding
of the requirements, but also to identify duplicate requirements, requirements that overlap or conflict as well as
missing requirements. Each Use Case Model may be built independently and in parallel – perhaps by separate teams.

Design Synthesis

Design Synthesis focuses on developing a set of components (products, systems, hardware/software elements) that
can perform the required functions identified in Functional Analysis, whilst also fulfilling the Quality of Service
requirements. Design Synthesis is further broken down into Architectural Analysis – during which model-based
trade studies allow selection of optimized architectures (ref 2) and Architectural Design, which focuses on the
allocation of functions and requirements to the selected architecture.

Figure 2: Harmony-SE Phases

RAILWAY EXAMPLE PROBLEM

Now that the overall workflow has been discussed, this technique will now be demonstrated using a real life
example, showing how a model based approach using an industry standard modeling language, SysML, leads to a
more robust design.

The example explores the concept of an Automatic Train Protection System (ATP). As I’m sure the system
described here is familiar to the reader – we will not delve too deeply into the Requirements of such a system but
rather explore how those Requirements would be modeled. The basic premise of an ATP system is that it can

Computing, Software, and Systems Engineering (2018)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2096-1

Applied Human Factors and Ergonomics International

identify potentially unsafe conditions and warn or even take over from the driver, slowing or stopping the train
before those conditions become dangerous. A simple premise – but in reality a very complex system.

Requirements Analysis

As previously stated the stakeholder requirements will not be explored in this paper, or their translation into a set of
system requirements. Suffice it to say that the starting point is a set of textual system requirements, stored (in this
case) in IBM Rational DOORS. Those Requirements may be represented in the modeling tool – in this case IBM
Rational Rhapsody, so that they may be grouped into Use Cases. Note that the Requirements are brought into
Rhapsody through an open standard that allows tool interoperability, Open Standards for Lifecycle Collaboration
(OSLC) (ref 3) – allowing the modeler to link the existing Requirements, as well as update and create new ones
directly in the modeling tool user interface – although the modifications are actually being made directly in the
Requirements Management tool – removing the need for any translation or synchronization of data between the two
areas.

Figure 3: Use Case Diagram

Requirements are grouped into Use Cases by means of dependency relationships, stereotyped ‘trace’ to distinguish
them from other types of traceability link. These dependencies are typically added using matrix views (figure 4)

Computing, Software, and Systems Engineering (2018)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2096-1

Applied Human Factors and Ergonomics International

Figure 4: Use Case to Requirement Traceability Matrix

Functional Analysis

Functional Analysis then proceeds by modeling each Use Case separately (these Functional Use Case Models are
brought back together during the Design Synthesis phase). Use Cases are modeled with four distinct views using
four different SysML diagrams:

 Model Context (Internal Block Diagram)
 Activity View (Activity Diagrams)
 Scenario View (Sequence Diagrams)
 State View (State Machine Diagrams)

Each view contributes a different perspective to the system as a whole and it is important that consistency be
maintained between them.

Model Context

The Model Context view consists of a structural representation of the Use Case being modeled, along with any
connected external entities (Actors).

Figure 5: Model Context

Computing, Software, and Systems Engineering (2018)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2096-1

Applied Human Factors and Ergonomics International

Activity View

The Activity View models each of the potential high level functional flows using a single view – although there may
be multiple Activity Diagrams for complex systems. Each action on the diagram is an operation of the system that
may later be allocated to architecture – or is functionally decomposed (and allocated).

Figure 6: Activity View

Scenario View

The Activity View models all functional flows in one view. Each path through those potential flows is a scenario.
SysML Sequence Diagrams show individual scenarios, which are useful for understanding and also form test cases.
Moreover the focus for the Sequence Diagram is on the communication – rather than the internal operations of the
system – which is the focus for the Activity View. However since the two views show some common information it
is possible to auto-generate the scenarios through analysis of the Activity View.

Computing, Software, and Systems Engineering (2018)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2096-1

Applied Human Factors and Ergonomics International

Figure 7: Scenario View

State View

The actual behavior of the system is modeled using a SysML State Machine. Whilst an initial set of states may be
derived from analysis of the Scenario Views, this view represents the domain knowledge of the modeler and as such
requires human consideration.

Computing, Software, and Systems Engineering (2018)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2096-1

Applied Human Factors and Ergonomics International

Figure 8: State Machine

Model Execution

One of the benefits of model based systems engineering is the ability to gain early confidence in the requirements or
design through execution of the corresponding model. For example during the first execution of this model, the
following issues were discovered:

 In our design, the traction power was not disabled when it should be
 Missing requirement: What to do if either emergency or EP brakes fail?
 Missing requirement: Once emergency brakes have been applied, should they stay on until a safe speed is

reached or should they switch to EP?

Figure 9: Model Execution - Animated State Machine

Computing, Software, and Systems Engineering (2018)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2096-1

Applied Human Factors and Ergonomics International

Figure 10: Model Execution - Animated Sequence Diagram

Traceability of System Operations

Once a sufficient level of confidence in the model has been reached, the system operations are traced back to the
system requirements – this time using a dependency stereotyped ‘satisfy’. This technique allows gap analysis – are
there any system operations that are not satisfying a requirement? or requirements that are not satisfied by an
operation of the system? When operations are allocated later during Design Synthesis – this traceability propagates –
effectively allowing an efficient way to allocate system requirements to architecture.

Design Synthesis

Once the Functional Use Case Model has reached a stable baseline and its associated requirements have been
verified and validated through model execution, the operations, attributes and external events may be allocated to
architecture. The selection of architecture is usually influenced by a trade study, which is outside the scope of this
paper and covered in detail in both the Harmony Deskbook (ref 1) and another paper, Getting the most from System
Engineering Trade Studies using Model Driven Analysis with SysML Parametric Diagram Execution (ref 2). Once
selected, the architecture is modeled using a SysML Block Definition Diagram:

Computing, Software, and Systems Engineering (2018)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2096-1

Applied Human Factors and Ergonomics International

Figure 11: System Architecture Modeled with Block Definition Diagram

Allocation of Function to Structure

The system operations may now be allocated from the Functional Use Case Model to the architectural pieces
modeled on the Block Definition Diagram. The allocation strategy may be enacted using a ‘white box’ version of the
original ‘black box’ Activity View – by splitting the view into Swimlanes. Each swimlane represents an architectural
element and operations may be allocated simply by dragging them into the appropriate swimlane.

Figure 12: Allocation via Activity View (partial)

This ‘white box’ activity view provides a second benefit – generation of Sequence Diagrams – just as in the original
black box view.

Computing, Software, and Systems Engineering (2018)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2096-1

Applied Human Factors and Ergonomics International

Figure 13: White Box Scenario View

Interfaces

Sequence Diagrams themselves give a benefit above the visualization, understanding and use as test cases. Since the
focus for the diagram is on the communication between the lifelines represented on the diagram – they may be used
to generate the interfaces between them also. This automatic generation ensures a robust definition of interfaces that
is consistent and ‘minimal’ – that is the interfaces only contain the messages that need to be there. In SysML,
interfaces are encapsulated in ‘ports’ along the boundary of an architectural element. Ports may then be connected
together allowing the architectural elements to communicate.

Figure 14: Ports shown on an Internal Block Diagram

Computing, Software, and Systems Engineering (2018)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2096-1

Applied Human Factors and Ergonomics International

Figure 15: CCU Subsystem Interfaces Shown on a Block Definition Diagram

Further artefacts may be automatically generated from the existing model elements – for example allocation
documents or classical N2 views.

Figure 16: Auto-generated N2 view

Subsystem State Machines and Model Execution

The behavior of each subsystem is then modeled using a SysML State Machine – and the entire architectural model
may be verified and validated through model execution. The resulting model contains a set of packaged artifacts for
each subsystem that shows the requirements allocated to that subsystem, it’s interfaces and how it should behave –
in short a model-based subsystem specification that may be handed off to another team to implement / further
elaborate.

CONCLUSION

This paper presented how you can apply SysML modeling and analysis techniques to railway signaling systems. The
paper presented the overall workflow and then showed with an example how the workflow is realized. The paper
showed the key SysML views and artefacts used in the workflow – the same set of artefacts being re-used at
Computing, Software, and Systems Engineering (2018)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2096-1

Applied Human Factors and Ergonomics International

different levels of abstraction in a repeatable pattern. Model assets are re-usable and can be re-used in similar or
subsequent projects allowing strategic re-use. Additionally, when a model is used, it can be quickly changed and
modified to see and understand ramifications of a design change – or a change to the requirements. The techniques
presented here provide real value to the design, implementation and testing of complex railway signaling systems,
de-risking projects and saving a significant amount of development time and costs.

REFERENCES

Bleakley, G., Lapping, A. & Whitfield, A. (2011), Getting the most from System Engineering Trade Studies using
Model Driven Analysis with SysML Parametric Diagram Execution, INCOSE International Symposium.

Hoffmann, Hans-Peter (2014), IBM Rational Harmony Deskbook, version 4.1
Hoffmann, Hans-Peter (2006), “SysML-Based Systems Engineering Using a Model-Driven Development

Approach,” Proceedings of INCOSE 2006 International Symposium, Orlando, FL.
OSLC Transitions Standards Development to International Standards Consortium, 2013

Computing, Software, and Systems Engineering (2018)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2096-1

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCoQFjAA&url=http%3A%2F%2Fwww.incose.org%2Fsymp2011%2Fdownload%2Fabstract%2FPaper_ID124_Abstract.pdf&ei=ZZIdU6S6Keas7Qab-4BA&usg=AFQjCNG1TjdsIJpMAn8T3-lvYWLfWR4wzw&bvm=bv.62578216,d.ZG4
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCoQFjAA&url=http%3A%2F%2Fwww.incose.org%2Fsymp2011%2Fdownload%2Fabstract%2FPaper_ID124_Abstract.pdf&ei=ZZIdU6S6Keas7Qab-4BA&usg=AFQjCNG1TjdsIJpMAn8T3-lvYWLfWR4wzw&bvm=bv.62578216,d.ZG4
https://www.oasis-open.org/news/pr/open-services-for-lifecycle-collaboration-oslc-transitions-standards-development-to-oasis
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CDIQFjAB&url=https%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Fcommunity%2Ffiles%2Fform%2Fanonymous%2Fapi%2Flibrary%2F6957c62d-c244-498c-a3d7-7483eaced23d%2Fdocument%2F2132d88d-4dde-40b4-8102-254ca4456c82%2Fmedia%2FIBM%20Rational%20Harmony%20Deskbook%20Rel%204.1.pdf&ei=iZEdU5CpNoGRhQeA14DoBw&usg=AFQjCNGcoPASDDdntzYKovhUC-m7uN7EhQ&bvm=bv.62578216,d.ZG4

