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ABSTRACT

Eye tracking research about driver distraction, applied to real world driving tasks, has so far demanded a massive
amount of manual intervention, for the annotation of hundreds of hours of head camera videos. We present a novel
methodology that enables the automated integration of arbitrary gaze localizations onto a visual object and its local
surrounding in order to draw heat maps directly onto the environment. Gaze locations are tracked in video frames of
the  eye  tracking  glasses’  head  camera,  within  the  regions  about  the  driver’s  environment,  using  optical  flow
methodology. The high robustness and accuracy of the optical flow based tracking - measured with a residual mean
error  of ca.  0.3 pixels on sequences,  captured  and verified in 576 individual trials -  enables  a  fully automated
estimation of the driver’s attention processes, for example in the context of roadside objects. We present results from
a typical driver distraction study and visualize the performance of fully aggregated human attention behavior.
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INTRODUCTION

Driver  distraction  has  for  decades  been  a  central  focus  of  eye  tracking  research  and  applications  (Young and
Mahfoud, 2007). Driver distraction is one form of driver inattention and is claimed to be a contributing factor in
over half of inattention crashes (NTHSA, 2009; World Health Organization, 2011). Eye tracking studies on driver
attention have mainly been focused on studies in artificial environments, such as, in driver simulators (Zhang and
Peterson, 2011; Paeglis et al.,  2011; Ekanayake et al.,  2013; Doshi and Trivedi, 2012).  Analyzing the focus of
attention in real world driving conditions from eye tracking data usually involves massive human resources for the
manual annotation of tens or hundreds of hours of head camera videos, in particular if the experiments involve a
substantial number of drivers and trials (Zhang and Peterson, 2011; Paeglis et al., 2011; Ekanayake et al., 2013). 

We present a novel approach that enables the automated aggregation of gaze localizations from multiple drivers
towards a reference road infrastructure and its environment. Gaze allocations in the driver’s environment are tracked
with optical flow based computer vision methodology in the head camera video sequence and finally projected onto
a selected key video frame. Gaze distributions of different drivers’ videos are aggregated by matching the respective
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key video frames. This technology enables for the first time, up to our knowledge, to estimate the driver’s distraction
patterns from drivers’ eye tracking videos, with respect to the environment, in an automated manner. 
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We  applied  the  approach  in  a  driver  distraction  study that  would  usually  involve  massive  manual  annotation
including unpredictable error margins from human interaction. We demonstrate the successful approach with results
from the fully automated aggregation of point-of-regards (PORs; Holmqvist et al., 2011), computation of dwell time
and looking behavior on the target infrastructure. Figure 1 depicts the sensor setup used in the driver study: Eye
Tracking Glasses (ETG) capture the eye movement behavior in a natural way, other sensors can be used for further
data analysis that is not in the scope of this work.

Figure 1. Study on driver distraction using eye tracking glasses.

RELATED WORK

Eye tracking studies on driver attention have mainly been focused on studies in artificial environments, such as, in
driver simulators (Ekanayake et al., 2013). (Harbluk et al., 2002) studied the impact of increased cognitive load
while driving to drivers’ visual searching behavior. (Tijerina et al., 2004) examined drivers’ eye glance behavior
away  from  the  road  scene  ahead  during  car  following.  In  (Chattington  et  al.,  2009)  driver  distraction  was
investigated in the context of the effects of video and static advertising on human eye movements. The presented
work is highly related to the one of (Fletcher et al., 2005). They presented a complete system that reads speed signs
in real-time, compares the driver’s gaze, and provides immediate feedback if it appears the sign has been missed by
the driver. 

The presented  work  essentially  extends the work  in  (Fletcher  et  al.,  2005) by being  capable  of  estimating the
probability density of PORs with respect to its local neighborhood, in order to quantify the distraction effect caused
by the sign as well as by its local environment, in an aggregated manner, i.e., over time and repetitive trials. From
this it enables new avenues for estimating driver distraction.

VIDEO BASED MAPPING OF GAZE

To automatically perform gaze mapping from eye tracking videos, a processing pipeline was developed, employing
state-of-the-art computer vision techniques. The main concept is to track each POR from the frame of its occurrence
over the whole video sequence, such that for each video frame all available PORs are mapped together with their
trajectories  through time.  The workflow starts  with a  POR mapping from single video  sequences  followed by
standard geometric image matching for the integration of POR information from multiple driver experiments. 

Single Gaze Mapping. The mobile  eye tracking system records  a  video of  the driver’s  view together  with the
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coordinates of PORs for each video frame. To extract  parameters for eye movement analysis, PORs have to be
tracked over the video sequence. Standard methods for feature point tracking (such as, Lucas and Kanade, 1981;
Tomasi  and Kanade,  1991) and  similar  feature  based methods (Kristan,  M. et  al.  2013)  only yield reasonable
accuracies if the points to be tracked are located on visually well-defined regions, i.e. on image locations with large
local  brightness  variations  (e.g.  on  corners  of  an  object).  Since  PORs  might  often  be  located  on  comparably
homogeneous image regions, such as the sky, the center of a billboard, or the road, outdoor driver’s gaze tracking
requires a method which calculates the optical flow (i.e. the 2D shift vector) between two video frames, for each
pixel, using global constraints to ensure a smooth solution (Zach et al., 2007). 

Typical variational formulation of the optical flow estimation required for gaze mapping over the video sequence is

min
v
∫
Ω

❑

|Dv|+ λ‖ρ(v )‖1

where  v=( v1 , v2 )
T : Ω→ R2

 is  the motion field,  Ω the image plane,  ρ (v )=It+ (∇ I )
T ( v−v0 ) the traditional

optical flow constraint with I t the time derivative of the image sequence, ∇ I  the spatial image gradient, v0 some

given motion field,  λ defines  the  tradeoff  between  data fitting and regularization,  and  |Dv| the distributional

derivative which reduces to ‖∇ v‖1. This formulation is based on constant pixel intensities over time. However, in
our driving sequences this is not the case due to, e.g., sun flares, such that the extension in (Chambolle, A., and Pock
, 2010) is used for the appropriate calculation in the specific application domain, 

min
u , v

∫
Ω

❑

|Du|∫
Ω

❑

|Dv|+ λ‖ρ(u ,v )‖1

and ρ (u , v )=I t+ (∇ I )
T ( v−v0 )+ βu with u :Ω → R and β  the influence of the term which explicitly models the

varying illumination. 

(a) (b)

Figure 2. (a) Example of optical flow based POR trajectories (b) Single fixation mapping represented by resulting POR density.

With results of optical flow for the whole frame, the previously (tracked) PORs can be mapped to the next video
frames by adding the according interpolated shift vector. It turned out that the input videos can be downscaled by a
factor of two without losing essential accuracy but gaining a significant speed-up, and for robustness the resulting
optical flow is median filtered with a spatial extend of 7x7 pixels. Overall, the coordinates of all PORs occurring in
any previews video frame are known for the current, i.e. the latest, frame, simultaneously defining the trajectory
through time for each POR (cf. Figure 2a). Next, each individual POR trajectory is analyzed. To be able to extract
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fixations, i.e., human gaze on the same location, we investigate if a POR from the previous frame projected to the
current frame via tracking corresponds to the next occurring POR. A maximal distance threshold is defined (i.e.,
0.5% of the image diagonal length) between subsequently tracked POR locations. 
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The main interest  of  the  presented  analysis  is  on the  locations of  attention in  the  traffic  infrastructure,  which
consequently has to be annotated in the video sequences (regions of interest (ROIs), Figure 3); however, for a fully
automated framework we imagine segmentation of optical flow information into semantic regions of interest, under
verification by visual object detection.

Aggregated Fixation Mapping. Two different types of aggregating the POR (or fixation) mappings are presented, as
follows. First, all information from single fixation mapping can be collected for multiple videos holding the same
scene (e.g. different drivers visiting the same scene or the same driver visits the location multiple times). In this case
the parameters, e.g. histograms, can be aggregated for each ROI. Technically the same key frames are used which
define the assignment of the ROIs to a unique region label, such that the aggregation is rather simple. Second, all
tracked PORs coming from multiple videos can be transferred into one image, such that a focus of regard can be
computed. The main difficulty is to find the geometric transformation between two video frames of different driving
sessions. Our preferred solution is to employ the available key frame annotations and extract various corner points
of the ROIs (the billboards to be specific). Then, a non-reflective similarity transformation is derived by solving the

according over-determined linear equation system of the form  Ax=b with  x=( AT A )
−1

AT b. Employing this

transformation  PORs can  be  transferred  to  one given video frame.  For  a  more  suitable  visualization a  density
estimate is extracted by accumulating all those PORs in an image followed by a Gaussian smoothing. This density
function can then be visualized by their brightness and contours (Figures 2b and 4).

Figure  3  depicts  in  more  detail  the  process  of  integrating  single  fixation  mappings  into  aggregated  fixation
mappings. From any sequence of video frames, A, a specific key frame is selected (red frame) and annotated for its
infrastructure objects; the single fixation mapping is then projected onto that key frame. In the same way, any other
video sequence B will be treated, if it is about driving behavior about the same infrastructure objects, driving the
same road. The integration of individual key frames and their single fixation mapping is dependent on the matching
between the visual information in key frame A and the corresponding one in key frame B. As long as the key frame
A origins from the same lane as B the proposed similarity transform yields highly accurate mappings. To avoid
incorrect mappings the driving lane has to be determined. As all reference key frames A are selected from images
stem from the right lane, key frames B from the left lane can be detected since the resulting transformations show
scales below 0.8. That is the case as the billboards are closer to the driver on the left lane and the specific threshold
was determined by experience. It turned out that more than 84% of key frames stem from the right lane and can
therefore be correctly aligned.

Figure 3. Individual frame sequences determine the aggregated POR mapping resulting from geometrical image matching.
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(a)

(b)

Figure  4. All fixations from 21 video sequences / single fixation mappings have been mapped into one final key frame. (a)
Distribution of individual fixation location estimates in the key frame. (b) The resulting gaze density estimation super-imposed
over the image (scaled in gaze points per pixel, right).

The study was performed with Eye Tracking Glasses (ETG) of SensoMotoric Instruments (SMI).  According to
national law on driver licenses, a horizontal field of view (FOV) of 120° must be guaranteed while ETG offer a
FOV of 130-148° horizontal  and 75-90° vertical  FOV on average,  for  Caucasian type drivers.  Calibration was
performed using 3 points in a plane of distance ~4m; before and after the driving task, we asked users to fixate
objects (traffic light, car, road sign) to check the accuracy of the calibration. 

We performed two comparative eye tracking studies, involving car drivers into a driving task in the city of Graz
(Austria),  one before (November 2012) and one after  (April  2013) the installation of advertising billboards.  12
drivers of different gender, age, and driving experience were asked to drive a prescribed track 2 times, each track
being about  2 km long.  Along the track,  they passed 4 specific  tracks of  interest  (Sequence  I,  II,  III  and IV)
including 12 billboards, ROI #1 – ROI#12, of 7 different subjects in total. Billboards were mounted in the middle of
the road, i.e., between two directional tracks. They contained subjects on both sides, therefore we can find different
subjects at the same location but each being oriented towards an opposite side. The speed of the drivers could be
estimated from GPS based trajectories and was approximately constant at 60 km/h.

To be able to  evaluate  the potential  accuracy  of  the optical  flow based POR tracking 50 points were  selected
randomly from the 576 sequences at their first appearance, manually measured in the last frame of the sequence and
then compared to the tracked point. The statistics of the residual errors in x, y and the distance in pixels are given in
Table 1 together with the statistics on track length for those 50 points. Note that the maximal tracking length of 195
frames corresponds to 7.8 seconds of tracking. Manual measuring was done on pixel level and only on visually very
distinct  points  such  that  the  overall  accuracy  of  tracking  an arbitrary  point  is  presumably  worse.  Anyway the
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accuracy is within a few pixels such that in the presented evaluation a POR will stay on the same object, which is the
important  aspect  for this work. To be able to evaluate the transformation accuracy of aggregation mapping the
statistics of the transformation residuals are given in Table 2. Those numbers represent the deviation of billboard
corner points after transformation. Quantitative results of the automated processing of drivers’ video material are
visualized in Figure 5. 

(a)

(b)

(c)

Figure  5.  Quantitative results  of  the fully  automated processing and analysis  of  the 576 driver  sequences.  (a)  Sample trial
approaching 4 different billboards (ROI#1-4) association with ST (street), IN (vehicle inside) and BG (background). (b) Statistics
on the fixations on billboard objects (ROI#1-12). (c) Risk diagram relating dwell and number of looks for decision systems
(Zwahlen et al., 1988).
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EXPERIMENTAL RESULTS

In total, we collected 12 drivers’ experiments, 2 times for before/after comparison, each trial with 2 tracks, along 12
billboards within 4 test tracks of interest; we hence determined 12*2*2*12 = 576 video sequences, each including an
approximation drive to a billboard appearance. This specific video frame refers to the key frame of the individual
driver’s sequence. A comparison using complexity analysis between a standard ‘annotation’ tool versus our method
quantifies the innovation: For the initial manual selection of attention objects, annotation of key frames, one needs
60 sec. with annotation (12 billboards, 5 sec. for each annotation) and 17280 sec. with our method (576 billboard
appearances, A1=30 sec. each, complexity O*D*R*A1, O=12 number of objects, D=12 drivers, R=2*2=4 runs).
Our  method provides  gaze  distributions  fully  automated,  whereas  with  annotation  one  needs  F*D*R*A2,  with
F=800 frames  to  annotate,  A2=3*4 sec.  per  annotation (4  sec.  annotation;  PORs outside the  ROIs  need  to  be
annotated to be tracked in all 3 reference frames per sequence at the same time, for nearby ROIs in our case), with a
total result of 460800 sec. for annotation (16 days, counting 8 hrs. per day) versus 17280 sec. (0.6 days) with a
performance ratio for our method being 27 times faster. For large scale studies, e.g. with 4000 frames, 50 drivers,
and 6 routes, it would amount to 14400000 sec. (annotation; 500 days) versus 108000 sec. (our: 3.8 days), being 133
times faster than manual annotation. Hence our method is suited very well for studies with F >> O which is usually
the case in studies on driver attention.

Table 1: Accuracy of point tracking evaluated on 50 manually measured PORs.

res-X
[pxl]

res-Y
[pxl]

distance
[pxl]

track length
[frames]

mean -0.32 0.30 2.51 68.3
rmse 2.35 1.90 3.02 83.9
min -7.00 -3.00 0.00 3.0
max 5.00 7.00 7.62 195.0

Table 2: Accuracy of the transformations for aggregation mapping.

mean [pxl] std [pxl] min [pxl] max [pxl]
2.39 0.81 0.00 7.98

CONCLUSIONS

We presented a novel approach for estimating driver distraction in real driving tasks. The quantitative evaluation of
the experiment  has been outlined in a fully automated way, is highly feasible for  large scale studies and takes
attention objects as well as their environment into account. The tracking methodology, based on optical flow, proved
to  be  highly  accurate  in  the  projection  through  long  frame  sequences  and  from  this  enables  fully  automated
processing of large video databases for extensive driver studies. 

The interpretation  of  the data  from the concrete  field trial  demonstrate  that  visual  orientation and persons are
relevant,  furthermore, that social gaze is capable to initiate social interactions with consequences on the overall
evacuation results, and that orientation is highly focused on the ground during evacuation. We conclude from these
significant cues that it is worth to continue with more focused studies on determining concrete parameters that we
intend to provide to the interface of a cognitive simulation model.
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