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ABSTRACT

Research  has  shown that  driver  inattention  is  the  most  prevalent  cause  of  traffic  collisions  accounting  for  an
estimated 25 to 56% of crashes in the US.  Driver inattention may result from drivers engagement in secondary
activities  (such as  texting or  cell  phone use),  or lack  of awareness  of  the surrounding environment.  The main
objective of this research is to investigate the relationship between potentially unsafe driving events and the actual
driver body posture and movements when performing a driving maneuver under different traffic configurations. The
paper presents results from a pilot study that captured the 3-D posture and activity of three drivers while performing
both  mandatory  (merging)  and  discretionary  (lane  changing)  maneuvers  on  freeway  and  arterial  segments  in
Gainesville, Florida.  The body posture of the drivers was captured through the use of a low-cost infrared depth
sensor.  A  7-point  human  skeletal  model  was  fit  to  the  captured  depth  frame  sequences  using  our  proposed
framework.  The  comparative  analysis  of  the  participants’  body  movements  while  performing  the  maneuvers
revealed differences between the participants’ body activity when performing the same maneuvers. The findings of
this  research  provide  significant  insights  regarding  which  body  movements  may  hide  unsafe  situations  while
performing a driving maneuver that requires the attention of the surrounding environment.  
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INTRODUCTION

Driver error constitutes a major cause of traffic crashes internationally (Peden et al., 2004). According to the World
Health Organization (WHO),  annually there are over 1.2 million fatalities  and over 20 million serious injuries
worldwide.  In  the  US,  the  100-car  naturalistic  study (Dingus  et  al.,  2006) concluded that  driver  distraction  is
responsible for about 80 percent of crashes and 65 percent of near crashes. In an effort to assist drivers in the driving
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process  and reduce  the degree  of uncertainty  due to  driver  error,  a  number of  advanced  (or  intelligent)  driver
assistance systems (ADAS) have been introduced (Shaout et  al.,  2011). Such systems are typically designed to
provide assistance or warnings to drivers by taking into account the position of the vehicle or other vehicle-related
components. Examples of driver-assistance systems include lane departure warning, pedestrian protection, blind spot
detection, collision avoidance, lane change assistance, and automatic parking. 

Recognizing the importance of driver assistance with respect to traffic safety, the Federal Highway Administration
(FHWA) and the US Department of Transportation (USDOT) introduced the connected-vehicle research program.
This program offers a mixture of cutting edge technologies such as advanced wireless communications, on-board
computer processing, advanced vehicle-sensors, GPS navigation, and smart infrastructure, to identify and warn the
drivers  on  unsafe  roadway  conditions.  The  connected-vehicle  program  supports  vehicle-to-vehicle  (V2V)  and
vehicle-to-infrastructure communication research activities. The vehicle-to-vehicle communication is related to the
exchange of data (e.g., speed, acceleration, heading angle, etc.) over wireless network that provide information on
surrounding vehicles status and allows for performing calculations and issue driver warnings to avoid crashes. The
communication option is based on Dedicated Short Range Communications (DSRC). Although the development of
the communication component of this program is not complete to date, a number of crash avoidance systems (e.g.,
blind spot and lane changing warning, forward collision warning, etc.) have been established so far. In August 2012,
DOT launched the Safety Pilot "model deployment" in collaboration with University of Michigan’s Transportation
Research  Institute  (UMTRI),  where  nearly  3,000 vehicles  were  deployed in the  largest-ever  road  test  of  V2V
technology. DOT testing is indicating interoperability of V2V technology among products from different vehicle
manufacturers and suppliers and has demonstrated that they work in real-world environments (NHTSA, 2014).

It should be noted that currently available ADAS systems are designed to look at vehicle’s external environment
whereas systems that focus on the drivers’ behaviors and actions inside the vehicle are still limited. However, the
next generation of advanced driver assistance systems should also consider  human factors  issues  and take into
account interactions among drivers and vehicles, either in relation to their own vehicle or the surrounding vehicles.
A  multifaceted  approach  that  looks  at  both  the  ergonomics  aspect  of  human  factors  research  as  well  as  the
psychological aspects of the engaged participants is expected to advance the state-of-the art of ADAS systems in the
future. 

Toward this direction, this paper investigated the relationship between potentially unsafe driving events and the
actual  driver body posture and movements when performing a driving maneuver (e.g.,  lane changing, merging)
under different traffic configurations in a naturalistic setting.  The ultimate objective of this research is to develop a
framework for constructing an in-vehicle driver-assistance system that accounts for the driver’s body posture and
movements, rather than considering solely the vehicle position relative to other vehicles on the road.

LITERATURE REVIEW 

A significant amount of research has focused on understanding driver intentions and actions (e.g., inattention or
distraction states), using vision-based systems.  Research studies primarily look into tracking of the head and the
face of the driver. For example, Huang and Trivedi (2004) and Murphy-Chutorian and Trivedi (2010) developed a
system that  monitors  and predicts  drivers’  head pose using video detection.   Their  head detection system was
designed for identifying drivers’ inattention and distraction, however, the authors did not specifically address how
inattention was detected.  Similarly, Braathen et al. (2001), developed an approach for identifying spontaneous facial
expressions, such as blinking, to monitor alertness and anxiety. Huang et al. (2003) and Wu and Trivedi (2008)
proposed a model that combines head pose detection with actual vehicle movement direction. 

In addition, past research (e.g., Tijerina et al., 2005; Trivedi et al., 2007; McCall et al., 2005; Doshi et al., 2011)
analyzed combination of head pose and gaze data for identifying and predicting driver’s intent to change lanes and
perform a maneuver. Research has also studied the position of hands and the grasp in conjunction with monitoring
the head pose for lane change intent analysis and prediction (Cheng and Trivedi, 2010) or for driver distraction
monitoring (Tran and Trivedi, 2009). A system that was developed to track the 3D body movement combined with
head pose was also introduced in Tran and Trivedi (2010), where preliminary results of body posture and lane
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changing  activity  were  collected  in  a  simulation  environment.  Tran  et  al.  (2012)  used  video-based  analysis  in
conjunction  with  pedal  sensor  measurements  and  looked at  drivers’  foot  behavior.  They  developed  prediction
models for braking and acceleration and concluded that the foot behavior depends greatly on the driver type. 

A significant  amount  of  research  has  dealt  with predicting automobile  driving posture  for  purposes  of  vehicle
interior design.  Reed et al. (2002) developed a model that predicts driver posture through a series of cascading
regression functions. The final model is constructed to produce the best fit for the eye and the hip position using data
from drivers with varying anthropometric characteristics.  Fatollahzadeh (2006) proposed mathematical models that
predicted truck drivers’ comfortable sitting posture and position. Mathematical models using multiple regression
analyses on selected body landmarks as well as anthropometrical measures were developed which proposed a linear
correlation between parameters. Kovacevic et al. (2010) explored the impact of anthropometric measurements on
ergonomic  driver  posture  and  concluded  that  anthropometric  measurements  of  drivers  and  surrounding
measurements of car controls affect traffic safety and driver’s fatigue.

Overall, the literature review reveals that a significant amount of research has been involved with the development
of advanced  driver-assistance  systems; however,  most of these systems rely on the automobile position on the
roadway and do not necessarily consider the drivers posture and actions. Apart from that, the lane trajectory and
position of the vehicle could potentially differ from the driver’s intent to change lanes. In addition safety research
has focused on eye tracking as a means of capturing driver’s attention, fatigue, or drowsiness; however, the entire
body posture of drivers when performing a maneuver as well as different postures between various groups of drivers
may also reveal behaviors that contribute to unsafe driving conditions.

METHODOLOGICAL FRAMEWORK  

This research proposes a novel approach for studying the actual  movements of drivers inside the vehicle, when
performing specific maneuver types or while engaging to secondary tasks that require a certain body movement.
With the use of a low-cost infrared depth sensor, the 3D shape of selected participants is being constructed, as they
are performing various driving maneuvers and/or as engaged in secondary tasks while driving. A brief description of
the  methodology  undertaken  to  collect  and  analyze  the  3D  data  is  presented  here;  however,  more  detailed
information can be found in Kondyli et al. (2013).  Each data frame captured by a digital depth sensor is a two
dimensional array of depth values (i.e., distance between the sensor and objects). Similarly, a collection of frames is

a  three  dimensional  array  that  can  be represented  as  D∈ RW ×H×N  ,  where  N denotes  the total  number of

recorded  frames,  and  W and  H denote  the  number  of  pixels  across  the  width  and  height  of  the  depth  frame

respectively. The depth value in a particular pixel with coordinates (i, j) on frame i is denoted by Di , j , t ∈ R+
. In

practice, each depth camera has a specific range of operation, which restricts accordingly the range of the recorded
values (see depicted field of view in Figure 1). The depth frames can be equivalently expressed as quadratic meshes

given  by X i , j ,t=( i−ic )Di , j , t f −1
,  Y i , j , t=( j− jc) Di , j , t f −1

,  Z i , j ,t=D i , j , t ,  where  ( ic , jc)  denote  the

coordinates  of  the central  pixel  in  the depth frame,  and  f is  the focal  length of  the depth camera.  One of  the
advantages of the quadratic mesh representation of the depth frames is that they can be easily visualized using
virtual lighting, shading, perspective and point of view using standard computer graphics techniques (Faugeras,
1993). An example of the quadratic mesh of a captured depth frame is shown in Figure 1 (left).  

The 3D shape of the body of the driver and part of the vehicles’ cabin are clearly captured in the depth frame.
Optionally, the color information from a video frame can be applied as a texture to the quadratic mesh of the depth
frame (Figure 2) and can also be used to enhance the detection of the body features.

The  primary  goal  of  our  data  processing  method  was  to  trace  body  features  using  the  captured  depth  frame
sequences. The body features of our interest included the X, Y, Z coordinates of the wrists, elbows, and shoulders as
well as the orientation of the torso. The values of these quantities can be estimated by fitting a human skeletal model
to each of the depth frames in our datasets. The main challenge in the skeletal fitting process is that the human body
in our particular field of view is very close to other objects such as the driver's seat, the steering wheel and the
driver's door. Any generic skeletal fitting algorithm performs better when the human body is clearly visible and at a
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distance from nearby objects,  and therefore will fail in our in-cabin setting. For instance, the skeleton tracking
algorithm included in the Microsoft Kinect Software Development Kit (SDK) fails in detecting the driver's body as
it was previously reported in Kondyli et al. (2013).   

Figure 1. Left: visualization of a depth frame. Right: The corresponding mask with enhanced boundaries between objects,
computed using our framework

Figure 2.  Two 3D views of the same frame from the recorded dataset. The video and depth frames are presented as a sequence of
textured 3D frames.  The field of view of the depth camera is also shown as a trapezoid.

In  order  to  overcome the aforementioned  skeleton  fitting challenges  we developed a novel  algorithm that  was
designed to fit a 7-point skeletal model to the body of the driver using a sequence of depth frames. Our skeletal
model included the line segments between the following joints: right wrist, right elbow, right shoulder, neck, left
shoulder, left elbow, and left wrist. The skeletal model is visualized in Figures 5 and 6. In our visualization we also
show the triangle formed by the left shoulder, the right shoulder and the neck, whose normal vector was used as an
indicator of the torso orientation.

The proposed skeleton fitting algorithm scans the depth frames in a diagonal fashion from upper right to lower left,
pixel stripe by pixel stripe until the entire image is covered. In each diagonal pixel stripe the medial points of the
masked regions (see mask in Figure 1) are detected. The medial points that belong to the same region of the mask
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are connected so that they form medial line curves in all the masked regions. It should be noted that the medial
points and curves are calculated in 3D and not in the 2D coordinates of the frames. After that the detected medial
curves are filtered so that potential noise caused by the depth sensor is removed. Finally the curves that correspond
to the arms are detected by using spatial constraints as well as geometrical constraints regarding the size, orientation
and curvature of the arms. This process fits our 7-point skeletal model to the best matching medial curves.  The
proposed algorithm has linear complexity, which allow us to perform the fitting of the skeleton in real time in less
than 15 milliseconds per depth frame in the computer configuration described in the next section.     

DRIVER BEHAVIOR DATA COLLECTION

The  field  data  obtained  for  this  research  were  collected  along  a  2.6  mi  stretch  of  Interstate  75  (I-75)  in  the
southbound (SB) and northbound (NB) directions, and a 0.7 mile long arterial segment (Newberry Road eastbound
and westbound approaches) in Gainesville, FL.  The freeway segment along I-75 has three lanes per direction and
the arterial  segment has three through lanes per direction, several  median openings,  and includes a total  of six
signalized intersections. A schematic of the data collection sites is presented in Figure 3. 

Figure 3.  Map of the data collection route along I-75 and Newberry Road in Gainesville, FL.

The data collection effort took place on Sunday, September 1st 2013, between 10 am and noon. Traffic conditions
were generally uncongested and free-flowing, especially on the freeway segment. Traffic on the arterial segment
was light, although towards the end of the data collection effort the flows were considerably increased.  For the
purposes of this pilot study, three participants affiliated with the research team were asked to complete one route
along the freeway and arterial segments. The participants performed two mandatory lane changes (i.e., merging onto
the freeway) and several discretionary lane changes on the freeway and the arterial street. The entire duration of the
experiment for each participant was approximately 20 minutes.  

The real-time driver behavior data were acquired using the PrimeSenseTM depth sensor contained in the Microsoft
KinectTM sensor. The device was connected (via a USB 2.0 port) to a 64-bit computer with Intel Core i5 (quad core)
CPU at 2.53GHz and 4GB RAM. The computer and the sensor were both powered using a 75 Watt car power
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inverter.  The resolution of the depth camera was 320 × 240 pixels with horizontal field-of-view angle (FoV) angle
of 57o. The resolution of the video camera was 640 × 480 pixels with horizontal FoV of 62o.  The range of the
camera was calibrated so that it records depth values in the range from 0.5m to 3.0m, which is suitable for the
limited space of the cabin of a typical passenger vehicle.  The sensor was fixed on the front passenger’s door, so that
the driver is within the field of view of the depth and video cameras. Error: Reference source not found shows the
field of view of the depth camera.  The green rectangle depicts the closest plane of sensing, which is located 0.5m in
front of the sensor (shown as the tip of the yellow pyramid in Figure 2).

DATA ANALYSIS

The video and depth sequences captured during this study were segmented into several fragments that correspond to
the merging and lane changing maneuvers that were performed as participants were driving along the freeway and
the arterial segment. Each of the fragments was analyzed independently using the framework presented earlier, and a
comparative  analysis was performed across  the corresponding  datasets  from different  participating drivers.  The
proposed framework was implemented in Java using the Java-for-Kinect library introduced by Barmpoutis (2013).

One characteristic of the Microsoft Kinect is that it has embedded an accelerometer that can be used to obtain the
signature of the roadway segment that was used in this study. The output of the accelerometer is a unit vector, which
typically indicates the direction of gravity in the case of a steady sensor. If the sensor moves due to the motion of the
vehicle, the output of the accelerometer may be affected by the slope of the roadway as well as changes in the speed
of the vehicle.   Figure 4 shows the the X and Z coordinates of the accelerometer reading for the three drivers
participated in this study. It should be noted that the Y dimension is perpendicular to the roadway and therefore is
mainly affected by the vector of gravity and therefore it does not capture significant information about the signature
of the road.  Although the time stamp varies by driver due to differences in their driving speeds, the actual profiles
of the accelerometer signature are very consistent among all three drivers. These signatures essentially describe
changes in the elevation and slope of the roadway segment. For example, the first part of the graph clearly depicts
the vertical alignment change due to vehicle driving from the arterial street on the on-ramp (upgrade) and onto the
freeway (downgrade). Similarly, the last part of the graph shows the change in elevation due to the vehicle exiting
the  freeway  through  the  off-ramp  (downgrade).  The  information  from  the  accelerometer  is  very  useful  for
identifying the exact  locations for  obtaining the  video  and depth sequences  of  interest  (e.g.,  merging  onto the
freeway).

Figure 4.  Microsoft Kinect accelerometer data obtained for three participants.
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Using the framework presented earlier, this study examined differences in the body posture during a lane change
maneuver for two of the three participants. Figure 5 shows the seven point skeleton model before and after a lane
change maneuver for  Driver  1 and Driver  3.  The differences in the body posture between the two drivers  are
apparent from this figure. The torso of Driver 1 remains practically unaltered during the maneuver, whereas Driver 3
clearly shifts her body to the left in order to have a better visual of the traffic at the next lane. On the other hand,
Driver 1 shifts only the head to identify potential conflict at the next lane through the rear mirror.

Figure 5.  Change in body posture due to a lane change maneuver shown by the fitted skeletons in the depth frames.
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Figure 6.  Change in body posture due to a merging maneuver for Driver 3. The plot shows the torso orientation during the
merging maneuver. The depth frames and fitted skeletons of 3 frames are shown from two 3D perspectives.  

In addition to the lane change maneuver, a comparative analysis of the body posture during a merging maneuver was
also performed.  Figure 6 presents the frame sequence during a merging maneuver for Driver 3, along with the
corresponding time-series  of the torso orientation.  In this graph the torso orientation represents  the rotation in
degrees from the torso position perpendicular to the steering wheel.  The orientation is positive for left-turn rotation
and negative for right-turn torso rotation.  Frames A, B and C are taken as before, during, and after the execution of
the merging maneuver.  From these graphs it is clear that the torso rotation of Driver 3 is considerably increased
during the  merging task.   Driver  3  torso orientation during this  merging maneuver  is  consistent  with the  lane
changing example shown in Figure 5. 

The same analysis was performed for the remaining two participants while merging on the freeway.  The time-series
plots of the torso orientation are presented in Figure 7.  
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Figure 7.  Comparison of the torso orientation during a merging maneuver at the same ramp merge junction between the three
participants.

A comparative analysis of the time-series of the torsi orientation shows considerably different profiles of the torsi
during the merging maneuver task.  Comparable to Driver 3, Driver 2 also displayed increased torso rotation during
the merging task; however, the profile of the torso rotation is different, as this is evident by the unsmooth time-series
plot.  Driver 1 torso orientation differs significantly from the other two.  As shown in Figure 7, Driver 1 does not
seem to have an apparent torso rotation, but there is some rotation throughout the merging task (there is a small
detected rotation at around 10 degrees for the first 25 seconds of the task).  

Similarly to the torso orientation, a comparative analysis of other parts of the participants’ body motion can be
performed.  Figure 8 shows the time-series of the X, Y, Z coordinates of the wrists, elbows, shoulders for Driver 3,
during the entire duration of the driving task.  Using the data shown in Figure 8 it is easy to obtain instances where
there is significant body activity by identifying spikes in the respective graphs, and further analyze the underlying
conditions for these instances. 

By observing  Figure 8 it is evident that there is a more frequent arm motion detected during the arterial segments
compared to the freeway segments as we anticipated. For example in this dataset the driver started merging  onto the
freeway at 100 sec. and exited at 300 sec. which correspond to intense arm activity as indicated by a significant
change to the coordinates of the wrists and the elbows. During the freeway segment (between 100 sec. and 300 sec.)
there was no significant change of posture detected and the coordinates of the traced joints change only occasionally
as it was also anticipated. This smooth driving pattern is significantly different compared to the one observed during
the arterial segments which corresponds to 0 sec. - 100 sec., 300 sec. - 480 sec., and 650 sec. - 700 sec. During these
segments the driver stopped at red traffic lights and followed a path that included many 90-degree turns as it is
shown in Figure 3. All of these instances were naturally associated with arm activity, which corresponds to changes
in the coordinates of the wrists slightly as it is shown in Figure 8.  Finally, the segment from 480 sec. - 650 sec.
corresponds to the northbound freeway segment, which was associated with occasional body motion according to
the plots in Figure 8.
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Figure 8.  Skeleton activity versus time for Driver 3.

CONCLUSIONS AND RECOMMENDATIONS

In this paper a pilot study was conducted to capture the 3-D posture and activity of three drivers while performing
various driving maneuvers. A low-cost infrared depth sensor was used to capture the 3-D posture. The participants
were observed to perform merging and lane changing maneuvers on freeway and arterial segments in Gainesville,
Florida.   A  comparative  analysis  of  the  participants’  body  movements  while  performing  the  maneuvers  was
conducted which revealed differences between the participants’ body activity when performing the same maneuvers.
More specifically, it was observed that there are considerable differences in terms of the torso activity for both lane
changing and in merging maneuvers between different drivers.  It is recommended to further examine the torso
activity  in  conjunction with the  activity  of  the  shoulder,  elbows and wrists,  in  order  to  obtain more complete
representation of the entire body posture.  It is further suggested to evaluate the effect of actual traffic conditions,
such as proximity of the subject vehicle to the adjacent lead/lag vehicles, to the body posture while performing these
maneuvers.  The findings of this research can provide significant insights regarding which body movements may
hide  unsafe  situations  while  performing  a  driving  maneuver  that  requires  the  attention  of  the  surrounding
environment.    

ACKNOWLEDGMENT

Funding for this study is provided by US DOT/RITA through STRIDE, the Alabama Department
of  Transportation  (ALDOT)  and  the  Florida  Department  of  Transportation  (FDOT).   The
support of the study sponsors is greatly appreciated.

Human Aspects of Transportation II (2021)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2098-5



Applied Human Factors and Ergonomics International

REFERENCES

Barmpoutis, A. (2013), “Tensor Body: Real-time reconstruction of the human body and avatar synthesis from RGB-D,” IEEE
Transactions on Cybernetics, Volume 43, No. 5, pp. 1347–1356. 

Braathen, B., Bartlett, M., Littewort-Ford, G., Movellan, J. (2001), “3-d head pose estimation from video by nonlinear stochastic
particle filtering,” in Proceedings of the 8th Joint Symposium on Neural Computation.

Cheng, S., Trivedi, M. (2010), “Vision-based infotainment user determination by hand recognition for driver assistance,” IEEE
Transactions on Intelligent Transportation Systems, Volume 11, No. 3, pp. 759–764.

Dingus, T. A., Klauer, S., Neale, V. L., Petersen, A., Lee, S. E., Sudweeks, J., Perez, M. A., Hankey, J., Ramsey, D., Gupta, S.,
Bucher, C., Doerzaph, Z. R., Jermeland, J., Knipling, R. (2006), “The 100-car naturalistic driving study, phase ii results of
the 100-car field experiment, report no. DOT HS 810 593,” National Highway Traffic Safety Administration (NHTSA),
Tech. Rep.

Doshi,  A.,  Morris,  B.,  Trivedi,  M. (2011),  “On-road prediction of driver’s intent with multimodal sensory cues,” Pervasive
Computing, IEEE, Volume 10, No. 3, pp. 22–34.

Fatollahzadeh, K. (2006). “A laboratory vehicle mock-up research work on truck driver’s seat position and posture”, Doctoral
thesis, Stockholm, Sweden.

Huang, K., Trivedi, M., Gandhi, T. (2003), “Driver’s view and vehicle surround estimation using omnidirectional video stream,”
Proceedings in Intelligent Vehicles Symposium, IEEE, pp. 444–449.

Huang, K., Trivedi, M. (2004), “Robust real-time detection, tracking, and pose estimation of faces in video streams”, Proceedings
of the 17th International Conference on Pattern Recognition, ICPR 2004,Volume 3, pp. 965–968.

Kondyli, A., Sisiopiku, V., Barmpoutis, A. (2013), “A 3D experimental framework for exploring drivers’ body activity using
infrared depth sensors”, IEEE International Conference on Connected Vehicles and Expo, Las Vegas, NV. 

Kovacenic,  S.,  Vucinic,  J.,  Kirin,  S.,  and Pejnovc,  N.  (2010) Impact  of anthropometric measurements  on ergonomic driver
posture and safety, Period Biol, Volume 112 No 1, pp. 51-54.

McCall,  J.,  Trivedi, M., Wipf, D., Rao, B. (2005), “Lane change intent analysis using robust operators and sparse bayesian
learning,” Computer Vision and Pattern Recognition - Workshops, CVPR Workshops, IEEE Computer Society, pp. 59–59.

Murphy-Chutorian, E., Trivedi, M. (2010), “Head pose estimation and augmented reality tracking: An integrated system and
evaluation for monitoring driver awareness,” IEEE Transactions on Intelligent Transportation Systems, Volume 11, No. 2,
pp. 300–311.

NHTSA (2014), NHTSA Announcement available at http://www.safetypilot.us/images/documents/NHTSA_Announcement_2-3-
14.pdf 

Peden, M., Scurfield, R., Sleet, D., Mohan, D., Hyder, A., Jarawan, E., Mathers, M. (2004), “World report on road traffic injury
prevention,” World Health Organization, Tech. Rep.

Reed, M. P., Manary, M. A., Flannagan, C. A. C., Schneider, L. W. (2002), “A Statistical Method for Predicting Automobile
Driving Posture”, Human Factors Volume 44 No. 4.

Shaout,  A.,  Colella,  D.,  Awad,  S.  (2011),  “Advanced  driver  assistance  systems  -  past,  present  and  future,”  in  Computer
Engineering Conference (ICENCO), 2011 Seventh International, pp. 72–82.

Tijerina, L., Stoltzfus, D., Parmer, E. (2005), “Eye glance behavior of van and passenger car drivers during lane change decision
phase,” Transportation Research Record: Journal of the Transportation Research Board, Volume 1937, p. 3743.

Tran, C., Trivedi, M. (2009), “Driver assistance for ”‘keeping hands on the wheel and eyes on the road”’,” IEEE International
Conference on Vehicular Electronics and Safety (ICVES), pp. 97–101.

Tran, C., Trivedi, M. (2010), “Towards a vision-based system exploring 3d driver posture dynamics for driver assistance: Issues
and possibilities,” in Intelligent Vehicles Symposium (IV), 2010 IEEE, pp. 179–184.

Tran, C., Doshi, A., Trivedi, M. (2012), “Modeling and prediction of driver behavior by foot gesture analysis,” Computer Vision
and Image Understanding, Volume 116, pp. 435–445.

Trivedi, M., Gandhi, T., McCall, J. (2007), “Looking-in and looking-out of a vehicle: Computer-vision-based enhanced vehicle
safety,” Transactions on Intelligent Transportation Systems, IEEE, Volume 8, No. 1, pp. 108– 120.

Wu, J., Trivedi, M. (2008), “A two-stage head pose estimation framework and evaluation,” Pattern Recognition, Volume 41, pp.
1138–1158.

Human Aspects of Transportation II (2021)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2098-5

http://www.safetypilot.us/images/documents/NHTSA_Announcement_2-3-14.pdf
http://www.safetypilot.us/images/documents/NHTSA_Announcement_2-3-14.pdf



