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ABSTRACT

Flight Data Monitoring (FDM) is the process by which data from on-board recorders, or so-called ‘black boxes’, is
analysed after every journey to detect subtle trends which, if allowed to continue, could lead to an accident.  An
opportunity has been identified to advance  the state  of the art  in FDM processes  by coupling recorder  data to
established Human Factors methodologies so that issues arising from the strategically important human/machine-
system interface can be better understood and diagnosed.  The research has also identified a significantly underused
source of recorder-data within the railway industry. Taking this data, the paper demonstrates how key areas of driver
performance  can  be quantified  using  a simple  behavioural  cluster  detection  method coupled  to  sensitivity  and
response bias metrics.  Faced with a class of operational accident that is increasingly human-centred, an underused
source of data, and methods that can join it to established human performance concepts, the potential for detecting
risks in advance of an accident are significant.  

Keywords: Black box data recorders, leading indicators, process charts, signal detection theory  

INTRODUCTION

The Spanish train crash in July 2013 reveals yet again that the interface of humans and machine systems is an area
of  strategic  concern  (Evans,  2011;  CAA,  2011).   Having  closed  off  numerous  other  technical/engineering
opportunities for accidents to occur what is left is a troubling class of accident which arises despite highly trained
and motivated personnel, the presence of robust safety management practices,  and fully functioning equipment.
More worryingly, the methods and approaches that have helped us achieve the current high levels of railway safety
seem to be less effective in the face of human/system problems such as these.  Another feature of the press coverage
around the Spanish rail accident was the presence of a black box data recorder.  This paper describes a new way to
deploy this data, new human-centered metrics for identifying trends and risks, and a predictive approach to accidents
based on the concept of Human Factors leading indicators.  

Regardless of measure, whether it takes into account exposure by distance or time, the risk to the travelling public
and workforce of using and operating the railway is exceedingly low.  In Europe the probability of a fatality is
approximately 0.57 per billion miles (Evans, 2011), or two fatalities per 100 million person travel hours (EU, 2003).
This figure arises despite the fact that exposure in time and distance have increased dramatically in some countries.
In  the  UK,  for  example,  between  1995 and  2012  the  risk  exposure  by  passenger  distance  rose  by  25  billion
kilometres or 58% (DfT, 2011).  At the same time estimated mean fatal train accidents per billion train kilometres
has fallen by approximately 9.1% annually (Evans, 2011).  Risk exposure is accompanied by an increase in the
overall intensity of operations.  The UK railway system currently supports 1.3 billion passenger journeys (ORR,
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2012) with 16% more trains timetabled in 2013 compared to 1995, most of which are running at higher passenger
occupancy levels.  This equates to 296.2 million train miles travelled in 2010/11 (ORR, 2012), all of which have at
one point or another been recorded on an On Train Data Recorder (OTDR) device.  

The act of automatically recording data on system parameters over time is referred to as ‘data logging’ or ‘data
recording’.  In the aviation industry the generic term data logging falls under the specific heading of Flight Data
Recording, which itself comprises several individual procedures and devices.  The most prominent of these is what
is termed colloquially as the ‘black box’, which represents the combination of a Flight Data Recorder (FDR) and a
Cockpit  Voice  Recorder  (CVR).   Other  systems under  the  heading  of  Flight  Data  Monitoring include  various
Aircraft  Condition Monitoring Systems (ACMS), such as engine health monitoring (e.g.  the Rolls Royce EHM
programme) and the wide range of parameters  available from modern avionics (e.g.  ARINC 573) via so-called
‘Quick Access Recorders’ (QARs).  While the aviation sector has a long history with on-vehicle data recording
devices for the purposes of safety and crash investigation, these are a much more recent innovation in the rail sector.

The Black Box Paradox

There are three key paradoxes inherent in this wider picture.  Firstly, because so few major rail accidents occur there
is  no  longer  enough  data  to  construct  reliable  forward  looking  estimates  (e.g.  Evans,  2011).   When  safety
performance data reaches the level of that achieved in the rail sector it instead starts to become characterised by
unpredictable periodicities, cycles or discrete events.  This is becoming evident in EU rail safety data, with one large
scale rail accident occurring on average every six years (EU, 2003).  Put simply, safety data is ‘levelling off’ with a
persistent class of human/machine-systems accident now elevated to the status of a key strategic risk (RSSB, 2009).

Secondly, “there is widespread concern within the industry that the background indicators – rather than the headline
grabbing ones – have remained worryingly stable” (Wolmar, 2012).  An example of this is UK data on Signals
Passed At Danger (SPAD) incidents.  In the period since the introduction of a countermeasure called the Train
Protection and Warning System (TPWS), after which there were initial improvements, there has been comparatively
little variation in the overall SPAD rate.  For example, the rate for Quarter 4 2012 is the same as Quarter 3, and
indeed the same (or very nearly the same) as on seven previous reporting periods since 2005 (e.g. ORR, 2012).  

Thirdly, and most paradoxically, is that the opportunities to use black box data for their original purpose (i.e. post-
accident analysis) are diminishing at the same time as the technical capabilities of data recorders are increasing.
What this means is that enormous quantities of non-accident data is being collected day in and day out, but not
currently used.  

Data Monitoring

This paper is premised on best-practice techniques developed within the aviation domain, specifically a process
called Flight Data Monitoring (FDM).  This is a “a systematic method of accessing, analysing, and acting upon
information obtained from digital flight data records of routine flight operations to improve safety.  It is the pro-
active and timely use of flight data to identify and address operational risks before they can lead to incidents and
accidents.” (CAA, 2003).  FDM is mandatory for operators of aeroplanes of a certified take-off mass in excess of
27,000 kg.  In effect, it is a way of using data collected from routine operations to detect trends which, if allowed to
continue, might eventually lead to an accident.  Changes are made to address issues, and the changes themselves are
monitored for their possible effects on other parts of the system.  

The traditional approach to FDM is focused on exceedence or event detection.  Events are defined as:  “deviations
from flight manual limits, standard operating procedures and good airmanship” (CAP 739, p16).  Computer software
is used to automatically scan FDR data for instances of these deviations, and a set of core events that cover the main
areas  of  interest  are  quite  standard  across  operators.   Event  detection is  commonly based on simple statistical
techniques and automatic algorithms that detect  different phases of flight and events therein.  FDM is a highly
successful way of making use of black-box data in a pro-active manner, but it too is challenged by the emerging
class of human-systems problem that is the focus of this paper.  Indeed, while having systems that automatically
detect events, it is still incumbent on so-called FDM analysts to manually interpret the lower-order ‘trace plots’ that
data recorders produce in order to derive meaning from them.  As such, there is considerable value in being able to
robustly transform these trace plots into higher order representations, to detect psychologically meaningful patterns
therein, and to automatically derive human performance metrics that can help to assess risk.  

Human Aspects of Transportation II (2021)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2098-5



Applied Human Factors and Ergonomics International

Human Factors Leading Indicators

Leading indicators are measurable precursors to major events such as an accident.  The indication of a precursor
‘leads’, or comes before,  the actual event itself.  Lagging indicators are the opposite.  These are so called ‘loss
metrics’ that can only become apparent after an event (Rogers, Evans & Wright, 2009).  Leading indicators are said
to be ‘proactive’ because they enable steps to be taken to avoid seriously adverse consequences.  Lagging indicators
are said to be ‘reactive’ in that a seriously adverse event needs to occur before it can be learnt from.  For this reason,
leading indicators are also sometimes referred to as ‘positive performance indicators’  and lagging indicators as
‘negative performance indicators’.  The concept of leading and lagging indicators originally derives from the field of
economics and the need to understand ‘business cycles’ (i.e. growth, recession, investment, divestiture etc.) and to
predict when one phase of a ‘cyclical process’ such as this will change to another (Mitchell & Burns, 1938).  The
terms have been appropriated more recently by the safety and risk field, particularly in view of developments in
Safety Management Systems (SMS) since the 1990’s.  Leading indicators, in a Safety Management context, can be
defined as “something that provides information that helps the user respond to changing circumstances and take
actions to achieve desired outcomes or avoid unwanted outcomes” (Step Change, 2003, p. 3).  

The basic ‘research problem’ can be stated thus: despite considerable improvements in safety performance in both
rail and aviation sectors, a persistent class of accident/near accident continues to occur.  This class of accident/near
accident  resides  at  the  interface  of  people  and  machine-systems.   What  is  required  is  a  means  to  detect  the
presence/emergence of such problems before they manifest themselves as a serious operational incident.  This paper
describes how black box data can be coupled to existing Human Factors methods to provide leading indicators of
trends residing at this interface.  Specifically, it examines OTDR data on driver responses to an in-cab warning to
reveal the types of errors that may be more likely to arise if the discovered trends are not addressed. 

METHOD 

Data File and Parameters

The OTDR data file is a continuous download for a single traction unit.  The recording started at 05:34:57 on the 6th
July 2012 and ceased at 21:36.32 on the 11th July 2012.  This is a period of 136 hours, 1minute and 35 seconds
during which the train made 107 journeys and travelled 1638 miles.  The raw data takes the form of a Comma
Separated (CSV) file containing a data matrix 191,021 time samples (rows) deep by 72 parameters (columns) wide:
a total of 13,753,512 data points.  The mean sampling rate is 2.56 seconds.  The logger itself scans the parameters
for changes at a rate of 20mS but, in the present system, to economise on memory requirements data are only logged
when one of the 72 parameters changes.  The OTDR device itself was a UK Railway Group Standards compliant
Arrowvale unit which recorded 72 parameters, 25 of which are in addition to those mandated.  In terms of data
classification four of the parameters; time, distance and two speed signals derived from a driven and non-driven
axle, are continuous ratio data.  The remaining 68 are nominal/binomial (i.e. on or off).  

Rolling Stock

The sample of OTDR data was obtained from a Class 153 ‘super sprinter’, unit number 153 306.  This is a single-
unit diesel powered railcar built between 1987 and 1988.  Class 153s are 23.2 meters in length and have an un-laden
weight of 41.2 tons.  They seat 72 passengers, comprise a riveted aluminium body shell affixed to a steel under-
frame, and are equipped with four electrically powered single-leaf Bode doors.  The prime-mover is an under-slung
turbocharged 6 cylinder Cummins NT855 diesel engine producing 285bhp.  A Cummins-Voith T211r hydraulic
transmission  drives  both  axles  of  the  leading  BT38 bogie  via  a  Gmeinder  final  drive.   The  Unit’s  maximum
operating speed is 75mph.  It is fitted with electro-pneumatic clasp brakes, with cast iron brake pads acting directly
on the tread of the wheel(s)  via compressed air actuation.  Air suspension is provided for additional  passenger
comfort and refinement.  
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Journeys and Routes

Data collection took place on the Great  Eastern (Route 7) and West Anglia (Route 5) regions of the UK’s rail
network.  The strategic ‘backbone’ of the Great Eastern region is the Great Eastern Main Line (GMEL) originating
from London Liverpool Street and travelling North East to Norwich.  There are numerous branch lines attached to
the GMEL providing services to commuter areas and freight hubs.  Data for the present analysis was derived from
three journeys between the towns of Ipswich and Felixstowe, a distance of 25 km, over which there are 14 AWS
sites.  

Automatic Warning System

The purpose of the Automatic Warning System (AWS) is described thus (McLeod, Walker & Moray, 2003):

"AWS serves two functions.  The first function is to provide an audible alert to direct the driver's attention to an
imminent event (such as a signal or a sign).  The second function, linked to the first, is to provide an on-going visual
reminder to the driver about the last warning.  [AWS] is there to help provide advance notice about the nature of
the route ahead, and thus communicate to the driver the need to slow down or stop" (p.4).  

AWS alerts and reminders are triggered by an electro-magnetic device placed between the tracks approximately 200
yards prior to the signal, sign or other event to which it refers (although this distance can vary according to local
circumstances).  Sensors underneath the train detect the presence of magnetic fields and activate AWS accordingly.
AWS has three system states:

State 1 – No Additional Action Required.

If the event to which an AWS activation is caused requires no action by the driver (such as a signal showing a green
aspect)  then  a  bell  or  simulated  chime  (at  1200Hz)  will  sound  briefly.   The  visual  display  will  also  remain
inactivated.  The driver behaviour in this case is to proceed; there is no requirement to cancel  AWS using the
cancellation button nor is there any specific need to enact driving behaviours in addition to those that are current or
planned.

State 2 – Attention is Required Towards Some Imminent Signal, Sign or Event.

If the event that activates the AWS requires (or potentially requires) the driver to slow down or stop then a steady
alarm or horn sound (at 800Hz) will sound.  The visual display will activate (turning from an all-black display to
yellow and black, known as the ‘sunflower’).  

State 3 – Acknowledge (and Continue to be Reminded of) the imminent or previous signal, sign or event.

The act of cancelling AWS (by pressing a button) stops the horn sound, and the sunflower continues to be displayed.
Failure to cancel AWS within approximately 2 seconds leads to an immediate emergency brake application which
cannot be cancelled (Railway Safety, 2001).  This level of braking may cause some discomfort to passengers and the
event will be logged on the OTMR equipment.  Repeated failure to cancel the AWS within the time allowed is likely
to lead to an investigation followed by some remedial training and coaching of the driver.  

AWS is a legacy system that was originally conceived as a means to prevent Signals Passed At Danger (SPADs).
Several major accidents resulted in the use of AWS, and the number of events it now refers to, being extended.
AWS now provides  warnings  in  six  circumstances,  for  example,  certain  types of  speed restriction,  some level
crossings, SPAD indicators and so on.  

Unfortunately,  the  simple  two state  warning  (bell/horn)  and  reminder  (black/yellow)  is  unable  to  discriminate
between these six different events.  There are approximately 29,000 AWS sites around the UK railway network,
which equates to a mean of 1.6 AWS indications received in the train cab every 1.6 route miles, or 2.7 activations
(either a bell or horn sound) every minute when travelling at 100mph.  

Many warning indications require no action from the driver, simply a press of the cancellation button.  Many other
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warnings occur in situations when the correct behaviour at that time is to accelerate the train (it is moving at slow
speed or departing from a station, for example).  The task of the driver, therefore, is not a simple one of hearing the
warning and pressing a button.  It requires them to interpret the source of the warning and the context in which it is
occurring, and then decide on the correct course of action.  The confusion that this could cause for drivers has been
cited in several accident inquiry reports (e.g. Cullen, 2001).  

RESULTS AND DISCUSSION

Process charting techniques are used to represent complex real-world activity in an easy to read graphical format 
using standardised symbols and layout.  The Process Chart methodology has a long application history, with early 
examples dating from the 1920’s (e.g.  Gilbreth & Gilbreth, 1921).  It has been used extensively in military and high
hazard domains as a way of understanding the interaction between people and systems, particularly in terms of 
identifying human error potential.  The method has been used in both rail and aviation settings before.  In this 
application, process charts offer a novel way of converting raw ‘trace plots’ derived from data recorders into an 
alternative representation, one that makes it easier to:

• Discern how larger journey phases break down into smaller component activities.

• The order and timing that component activities occur. 

• Who is performing what activity.

• The presence of distinct activity clusters.  

The 72 parameters extracted from the data recorder were classified into: 

Operator decision (e.g. proceed on basis of received information?)

Operator action (e.g. move control)

Information transmitted (e.g. to another part of the system via a communications medium)

Information received (e.g. from system interface or other actor/agent

Automatic action (e.g. an action performed autonomously by the system)

Once classified the process chart itself was constructed.  This involved creating a timeline and columns for each
‘agent’ in the system.  In the case of the railway example six such agents/columns have been used (Figure 1).  As
different  recorder  channels  become active,  the corresponding process  chart  symbol is  inserted into the relevant
column at the correct point on the timeline.  The sequence of activities and their dependence on each other defines
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when these symbols are linked.  Thus an activity/symbol that occurs after another activity/symbol becomes linked
‘vertically’.  Activities that are performed concurrently are linked ‘horizontally’.  Figure 1 shows the ’normative’
structure of operations associated with receiving and cancelling an Automatic Warning System alert.  

Having the ability to detect behavioural clusters grants the opportunity to assess whether such structures are typical
or atypical.  Indeed, whether they are one of a number of different behavioural responses within a wider repertoire,
and  whether  one  cluster  of  behaviour  is  implicated  in  risk  outcomes  more  than  another,  and  under  what
circumstances.  From the collected data three different ‘clusters’ were detected.  The first cluster is the normative
‘perceive-decide-act’ sequence.  Here the infrastructure on the track triggers an in-cab warning horn.  The driver
perceives (hears) this, has enough time to classify it (0.89 seconds) and respond by pressing the cancellation button.
The second cluster is the ‘predictive cancel’ sequence.  In this case the infrastructure on track triggers the in-cab
warning horn but the driver responds so quickly that it is not possible to have perceived, classified and responded to
the warning.  Instead, the driver has seen the track infrastructure and has anticipated the in-cab warning and timed
their response to coincide with it starting.  The third cluster is the ‘multiple predictive cancel’ sequence.  As in
cluster two, the driver can see the track infrastructure ahead and is pressing the cancellation button numerous times
before hearing the in-cab warning horn, and several times after the warning has sounded and been cancelled.  

Figure 1. Annotated process chart showing the type and sequence of operations required to correctly
respond to an AWS warning  

Response Bias

Based on the analysis above it is clear, firstly, that cancelling an AWS warning is not merely a perceptual one of
hearing  and  seeing  the  different  system alerts  and  indications,  it  is  also  cognitive:  drivers’  not  only  have  to
discriminate a ‘stimulus’ from within a ‘noisy’ environment, but correctly classify it and respond.  Secondly, there
are different strategies that drivers employ to perform this apparently simple task.  Signal detection Theory (SDT)
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helps to untangle these different aspects by separating out a person’s sensitivity to stimuli (how easy it is to detect
something) and their response bias (their preference for responding one way or another to the stimuli).  SDT helps
us to understand why a particular ‘stimulus’, which might be very loud, visible or unambiguous, is not always
responded to in the ways we expect (or vice versa).  Signal Detection Theory classifies human responses to stimuli
in the environment in four ways.  The responses that drivers made within each of these categories are shown in
Table 1.  

Figure 2. Three clusters of behaviour associated with cancelling an Automatic Warning System (AWS)
alert were detected

Table 1. Driver responses to the Automatic Warning System (AWS) can be characterised according to
the Signal Detection Theory (SDT) paradigm as follows  

Status of AWS/TPWS System Categorisation Number %

AWS Horn followed by reset Hit 21 30%

AWS Horn followed by no response Miss 0 0%

AWS Bell followed by reset or no activation followed by
reset

False Alarm 22 31%

AWS Bell followed by no response Correct Rejection 28 39%

Totals 71 100%

The ability to accurately detect stimuli in the environment and correctly classify them is the desired outcome.  Under
the Signal Detection Theory (SDT) paradigm this requires a high number of hits and a low number of false alarms.
For example, if the reset button was pressed in response to ANY warning indication this will ensure a 100% Hit rate
but will also increase the rate of False Alarms.  Accuracy in this case is low.  If, on the other hand, the driver is
trying to do the opposite, to avoid False Alarms and instead maximise Correct Rejections, they would not respond to
ambiguous ‘signals’.  This would increase the number of Correct Rejections but it would also increase the number of
‘Misses’.  Accuracy in this case is also low.  Signal Detection Theory enables us to separate sensitivity (d’) from
decision  bias  (C).   Sensitivity  is  a  measure  of  accuracy  and tells  us  how easy  it  is  to  distinguish a  particular
environmental stimuli (e.g. an in cab warning).  Decision bias tells us whether one response is more probable than
another.  
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Human responses to certain stimuli vary because of incentives embodied in the environment.  In train driving, for
example,  there is a strong incentive in normal operations to prevent unnecessary applications of the emergency
brake because an AWS warning was missed.  This is because an unwanted brake application cannot be cancelled
and is highly inconvenient.  On the other hand, the consequences of False Alarms are low because nothing happens
when the cancellation button is pressed in error.  Because of this it would be expected that train drivers might adopt
a ‘liberal’ decision bias and be willing to accept False Alarms (redundant presses of the cancellation button) in order
to achieve the maximum number of ‘Hits’ .   Added to this is the discriminability of the ‘stimulus’ people are
responding to, a stimulus that  occurs  in a ‘noisy’ real-world environment.   By noise we refer  to other  stimuli,
competing  demands  and  distractions  in  the  environment  as  well  as  the  background  noise  inherent  in  human
perceptual and cognitive processes.  Decision bias and sensitivity interact with these ‘noisy’ transport environments
to make some future responses more likely than others, in ways that are not always immediately apparent.  For
example, highly visible warnings that are apparently 'missed’, or control actions that are at odds with the situation.  

Sensitivity

Sensitivity to a stimulus is given by the metric d-prime, which was calculated as follows:

d’ = z(FA) – z(H)

where z(H) is the number of Hits expressed as a z-value subtracted from the same Z-transformed False Alarm rate.
The results obtained are shown in Table 2:

Table 2. Driver’s sensitivity to the Automatic Warning System (AWS) alerts

Journey Hits Misses
Correct

Rejections
False Alarms d-prime

1 5 0 11 0 4.65

2 9 0 6 7 2.30

3 7 0 11 15 2.13

Mean 3.03

The d-prime figure measures the strength of the stimulus, which in this case is an AWS warning.  A value of 3.03
indicates that drivers are highly sensitive to it: in this situation it is unambiguous and easy to discriminate from the
wider  background of  noise,  distractions,  other  contextual  factors  etc.   Expressed  more formally,  the responses
drivers’ are providing when an AWS warning is overlain on top of the ‘contextual noise’ is 3.03 standard deviations
‘different’  from the responses  they give when the signal  is  absent  (and only the ‘contextual  noise’  is  present).
Sensitivity  provides  an  important  leading  indicator  concerning  the  discriminability  of  information  needed  for
driver’s  to develop accurate situational  awareness.   The same ‘stimuli’ may yield different  levels of sensitivity
depending on external/contextual factors.  A warning that was not expected, ambiguous, not fully understood or
masked may lower sensitivity.  

Decision Criterion
Decision bias/criterion is given by the metric c, which was calculated as follows:

c=
−Z ( H )+Z (FA)

2
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The results obtained are  shown in Table 3.   Decision Bias  is  independent  of sensitivity and relates  not  to the
discriminability of the ‘signal’ but to the payoffs involved in making one response in favour of another.  Thus,
regardless of how easy it is to discriminate a stimulus a counter intuitive response may still be favoured.  This is
because the consequences of False Alarms, Misses and Correct Rejections vary with the context.  Psychological
research shows that  decision bias is more unstable and situationally dependent than sensitivity and, therefore,  a
potentially valuable Leading Indicator.  

Table 3. Results of decision bias (c)

Journey Hits Misses Correct
Rejections

False Alarms Criterion

1 5 0 11 0 0

2 9 0 6 7 -1.21

3 7 0 11 15 -1.26

Mean -1.24

The mean decision bias value across the three sampled drivers was c = -1.24 which indicates a liberal bias.  Driver’s
make more responses that indicate the AWS signal is present than it is absent.  In other words, they are prioritising
False Alarms over Correct Rejections which, in turn, provides a clue as to the sorts of error that may be more likely
to occur in future (i.e. warnings that are cancelled incorrectly).  Assuming that drivers’ ‘internal responses’ to the
AWS warning are normally distributed (as per Signal Detection Theory) it  is possible to plot  individual driver
decision  bias’  into  the  chart  below  which  provides  an  important  diagnostic  tool  in  defining  risky
psychological/decision making states.

According to Figure 3, Driver 1 shows no systematic bias in their responses to the AWS warning.  They respond
correctly to the AWS warning on every occasion and his/her False Alarm rate is zero.  Drivers 2 and 3 are different.
They are exhibiting a strong ‘liberal  response bias’ meaning that they are much more inclined to exhibit ‘false
alarm’ responses (and behavioural clusters 2 and 3).  With the ability to detect these changes in decision bias comes
the possibility to analyse a) the extent to which different biases interact with accident/incident rates (i.e. is a liberal
bias of this magnitude associated with particular types of risk) and b) how the context influences human decision
making (and therefore how that context can be modified to ‘un-bias’ human responses).  
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Figure 3 – Cumulative probability plot showing the extent and direction of response biases exhibited by
the drivers.  

CONCLUSIONS

This paper has described how the outputs from transport data recorders can be coupled to existing Human Factors
methods to provide advanced indication of strategically important Human Factors risks.  The ‘black box paradox’ is
that the opportunities to use these devices for their original post-accident purpose are diminishing at the same time
as their technical capability and data richness are increasing.  In addition, the types of risks are changing, with
progress  in  technical  areas  of  reliability  and  performance  exposing  issues  around  human-machine  system
interaction.  To continue to ensure safety in the face of increased risk exposure and operational intensity, better use
of this data needs to be made.  This paper demonstrates how black box data from the rail sector can be turned into
useful ‘information’ in the form of Human Factors leading indicators of risks associated with the use of an in-cab
warning device.  Sensitivity provides a measure of how much useful information there is in the environment and the
extent to which drivers can discriminate it from the background of contextual noise.  Warnings, stimuli and so forth
may,  in  an  engineering  sense,  appear  to  be  unambiguous,  yet  they  may  be  considerably  less  so  cognitively.
Sensitivity provides a measure of this which can, in turn, be associated with changing risk.  Decision bias reveals the
likelihood that one type of driver response will be favoured and how this interacts with risk.  In a wider application
it  would be possible to examine decision bias  in a systematic  way looking at  differences  between drivers  and
between particular routes.  This could provide insight into driving styles and indicate whether particular aspects of a
route result in a shift in decision bias.  For example, a specific AWS signal on a particular route may result in a high
level of predictive pressing (high false alarms) relative to most others, identifying this as a more risky section of
journey.  Relationships such as these would need to be established based on large-scale future research but even on a
smaller sample of data the method was able to detect potentially important differences between drivers, with some
adopting a much more liberal response bias than others.  The principle, however, is a much more important one.
Human Factors  methods like these can accept  recorder  data as an input,  are amenable  to the kind of  software
implementation that would be required in a full-scale application, and point the way towards Leading Indicators of
strategically important Human Factors risks.
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