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ABSTRACT

Sensing the mental,  physical  and emotional  demand of  a  driving task is  of primary  importance  in road safety
research and for effectively designing in-vehicle information systems (IVIS). Particularly, the need of cars capable
of  sensing  and  reacting  to  the  emotional  state  of  the  driver  has  been  repeatedly  advocated  in  the  literature.
Algorithms and  sensors  to  identify  patterns  of  human behavior,  such  as  gestures,  speech,  eye  gaze  and  facial
expression,  are becoming available by using low cost  hardware:  This paper presents  a new system which uses
surrogate measures  such as  facial  expression (emotion) and head pose and movements (intention) to infer  task
difficulty in a driving situation. 11 drivers were recruited and observed in a simulated driving task that involved
several pre-programmed events aimed at eliciting emotive reactions, such as being stuck behind slower vehicles,
intersections  and  roundabouts,  and  potentially  dangerous  situations.  The  resulting  system,  combining  face
expressions and head pose classification, is  capable of recognizing dangerous events (such as crashes and near
misses) and stressful situations (e.g. intersections and way giving) that occur during the simulated drive.
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INTRODUCTION

Measuring or estimating the mental and physical demand of a driving task has a central role both in road safety
research  and  for  vehicle  and  in-vehicle  information  systems  (IVIS)  design.  Previous  research  has  shown
exhaustively that the implementation of on-board electronics, often originally conceived as a safety aid, can actually
turn into a safety threats, since it competes for the driver’s attention when providing safety related information. 

Advanced  driver  assistance  systems  (ADAS)  manage  to  reduce  the  driver’s  cognitive  workload  by  partially
automating some driving tasks, as controlling the speed during a long drive, possibly adapting to small changes in
the traffic flow. While such system has a clear advantage in terms of comfort and safety, as they relieve the driver
from a series of barely operational duties, at the same time they can induce an unsafe adaptation on the drivers’ part,
increasing the response delay in hazard detection tasks(Rudin-Brown & Parker, 2004).

From a different perspective, road congestion and time pressure, together with personal and situational factors, such
as age and sex, previous anger or stress, competitiveness, sensation seeking, anonymity, are known to be related to
driver  aggression  and  anger  (Soole,  Lennon,  Watson,  & Bingham,  2011).  Although intuitively  emotion  at  the
steering wheel can be regarded as a matter of pleasure and comfort, it must be remarked here that when driving,
emotions  such  as  anger  and  aggressive  behavior  are  regarded  as  a  major  contributing  factor  to  car  crashes
(AAAFoundation.org, 2009), comparable to alcohol impairment (Cook, Knight, & Olson, 2005)
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Algorithms  and  sensors  to  recognize  natural  human  behavior,  such  as  gestures,  speech,  eye  gaze  and  facial
expression, are becoming available, even on low cost hardware. Social cues, such eye gaze, body posture, facial
expression and actions as gestures and touch, possibly combined with haptic feedback and powerful visualizations
like augmented reality have proven effective in supporting communication and facilitating complex tasks, lightening
the cognitive demand of computer applications and are now under the lens of road safety and car industry designers,
with the aim of exploiting natural paradigms of interaction in the car, without competing for the driver’s attention.

The present work focuses on the problem of sensing user behavior, specifically facial expression and head pose,
with the aim of gathering emotional and attentional cues from which to infer the level of task difficulty that the
driver is currently experiencing. After introducing the research problem both from the point of view of road safety,
and from that of human computer interaction and machine learning we describe an original technology capable of
recognizing several important phases of a drive: normal drive versus intersection negotiation, and the occurrence of
dangerous events.

We discuss the strengths and limitations of our approach with the aid of a field exploratory test and a simulator
experiment,  respectively  organized  for  making  sense  of  the  real  world,  complex  problem,  for  collecting  the
necessary training data, and for testing the performances of the system.

BACKGROUND AND RELATED WORKS

Emotion and Attention while driving have been long under the lens of road safety scientists. As said above, driving
anger and aggressive behavior are a growing cause of concern: emotional arousal (as opposed to a neutral mood)
when driving is known to decrease the drivers’ performances in terms of lane adherence, steering wheel angle and
sharpness of lane crossings (Cai, Lin, & Mourant, 2007). Within the car, several scenarios have been envisioned that
rely on emotion recognition in order to, for example, improve drivers’ productivity, wellbeing or pleasure while
keeping in mind drivers’ safety (Eyben et al., 2010). However, the automatic recognition of the emotional state of
the driver, or more precisely, the classification of a suitable proxy for such emotional state, e.g., facial expressions,
stress in the voice or a body postures, is still an open topic for research.

Hoch et al. (Hoch, Althoff, McGlaun, & Rigoll, 2005) exploit a fusion of audio and video modalities to classify the
drivers’  emotions  according  to  three  possible  classes:  neutral,  positive,  negative.  They  took  audio  and  video
recordings within a real car, but without motion (hence with little or no noise and relatively stable light). By doing
so,  they  manage  to  achieve  an  average  90%  recognition  rate.  The  application  domain  they  sketched  is  the
improvement of human computer interaction in the car, for example, adapting the dialog strategies of the assistance
and information systems, reducing mental workload and distraction.

MIT’s SmartCar project  (J.  a. Healey & Picard,  2005; J.  Healey & Picard, 2000) explored how an appropriate
combination  of  sensors,  capable  of  providing  physiological  data  such  as  electromyogram,  electrocardiogram,
galvanic skin response and respiration can be fed to appropriate pattern recognition algorithm in order to predict
driver’s stress. In a naturalistic study, they compared the data gathered from sensors worn by the drivers to the level
of stress self-reported by the participants, showing a fairly accurate (88.4%) rate of prediction for the measures
above. The application domain traced by J. Healey & Picard (J. Healey & Picard, 2000) is the recognition of driver’s
stress, and hence comfort and wellbeing. The authors focus on the technology rather than depicting an application
scenario, although in the concluding remarks they sketch the possible outcome of ’giving a quantified feedback to
the individual’ thus framing the possible interventions in the self-awareness domain and behavior change. 

The ’Emotionally Responsive Car’ (C. Jones & Jonsson, 2008; C. M. Jones & Jonsson, 2005; Jonsson, Nass, Harris,
& Takayama, 2005; Nass et al., 2005) is envisioned to react to the driver’s sensed emotion by changing the driver-
vehicle interface. Example reactions include becoming ’less or more talkative depending on the mood of the driver’
or changing ’the telematics, climate, music in the car in response the mood of the driver’. In a driving simulator,
drivers are presented to challenging driving conditions to elicit a range of emotions, such as boredom, sadness/grief,
frustration/anger, happiness or surprise. Emotional arousal is inferred from paralinguistic cues in speech recordings
taken during the simulated driving task by means of an automated system and compare the results to evaluations
performed by human experts.

Schroeter and colleagues (Schroeter, Soro, & Rakotonirainy, 2013) discuss a case study of emotion recognition from
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facial expressions in the car aimed at supporting the development of applications for enhancing self-awareness (thus
influencing the driver behavior, both in real-time and over time), supporting social awareness while driving, e.g. to
change drivers’ attitude towards others, and finally improving urban awareness in and outside the car enhancing the
understanding of the road infrastructure as a whole. In their case study Schroether and co-workers show qualitatively
that facial expressions of the driver can be put in relation with significant events occurring during the drive, such as
lane merging and intersection negotiation. 

Discovering the focus of driver attention is not an easy task. Laboratory studies can exploit eye tracking to match
eye-gaze and object in a controlled environment  (Fletcher,  Loy, Barnes, & Zelinsky, 2005; Horrey, Wickens, &
Consalus, 2006; Pradhan, Pollatsek, Knodler, & Fisher, 2009). However, such solution have mainly been adopted
for addressing the problem of driver distraction, e.g. bringing into focus the risks of in-vehicle information systems
(IVIS) competing for driver’s attention (Donmez, Boyle, & Lee, 2007, 2008; Jahn, Oehme, Krems, & Gelau, 2005;
Roberts, Ghazizadeh, & Lee, 2012), rather than, as is our aim, for understanding the experienced task difficulty. 

Previous research has often relied on self-reporting to assess the level of task difficulty and understand how drivers
respond to on-road events. 

Electrodermal activation, typically galvanic skin response, has been adopted to understand how drivers manage to
respond to traffic and road demands. Seminal work on this subject evidenced that drivers manage to maintain a
desired level of anxiety  (Taylor, 1964). In more recent research, Wilde attributes such variations to the driver’s
subjective interpretations of the risk or probability of crash (Wilde, 1982), and Fuller to an attempt on the driver’s
part of maintaining a desired level of task difficulty (Fuller, 2005).

In both cases, drivers seem to aim at ’optimizing’ the level of arousal, by adjusting their driving style (mainly the
speed) in order to keep a desired, not too low, not too high, level of risk or difficulty, respectively.

However,  in  the  view  of  a  real  world  deployment,  neither  self-reporting,  nor  invasive  measures  such  as
electrodermal activation are suitable for measuring the task difficulty. Instead, we will describe how the combined
adoption of head pose detection and facial expression recognition can provide an unobtrusive estimate of the task
demand, support the implementation of the proposed scenario, and could potentially be implemented for personal
mobile devices, and hence easily adopted on a large scale. 

Algorithms  and  techniques  for  facial  expression  recognition  from  images  or  video  involve  the  isolation  and
subsequent processing of a variable number of regions (features) of the face, and a comparison with corresponding
regions from other expressions (typically the neutral expression) to determine changes in appearance or position of
critical areas (see (Fasel & Luettin, 2003) for a comprehensive survey on this subject). 

Changes in appearance, such as the onset of wrinkles on one’s forehead when expressing surprise can be evidenced,
for example using (combinations of) Gabor filters  (Lyons, Akamatsu, Kamachi, & Gyoba, 1998) and feeding the
resulting representation into an appropriate classifier, typically a multilayer perceptron (such as in (Zhang, Lyons,
Schuster, & Akamatsu, 1998)) or a support vector machine (e.g in (Bartlett, Littlewort, Fasel, & Movellan, 2003)).

Starting from such background work we have developed a novel approach to driving task difficulty estimation, that
combines  emotional  cues  from facial  expression  to  attentional  indicators,  such  as  head  pose.  In  the  following
sections we describe in detail the collection of the training sets and hoe the raw classification can be processed to
infer the occurrence of certain stressful events.

DATA COLLECTION

Two sessions of data collection were performed to inform the present research. In Study 1 the researchers collected
video  footage  in  a  naturalistic  driving  setting.  This  was  aimed  at  making  sense  of  the  feasibility  of  applying
traditional facial expression recognition techniques to the in-vehicle setting. 

In  Study 2,  11 participants  were  recruited  and observed in  a simulated driving task that  involved several  pre-
programmed events aimed at eliciting emotive reactions, such as being stuck behind slower vehicles, intersections
and roundabouts, and potentially dangerous situations, including a vehicle drifting against the traffic and a car that
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pulls out of a blind intersection failing to give way.

Study 1

Four test drives were carried on at different times of day, capturing images of the driver at about 1 FPS from a
camera installed on the dashboard of the vehicle. Sample captures are presented in figure 1. As expected, not all
frames could be positively processed for face detection and emotion recognition; it is worth remarking here that this
experiment is meant to be exploratory and to guide the design of the simulator study described further on, rather
than to provide figures and statistics.

Table 1: Frames captured during a real drive

Face detected No Face Detected

drive #1 624 (65.7%) 326 (34.3%)

drive #2 2006 (68.7%) 914 (31.3%)

drive #3 658 (54.2%) 556 (45.8%)

drive #4 2933 (59.2%) 2020 (40.8%)

Table 1 presents the results of face detection for the frames captured during the test drives. Since the device and its
pedestal were removed from the vehicle after each drive, the 4 series of captures were taken from slightly different
perspectives. Also, the time of day varied between mid morning and late afternoon. Face detection failed for 35% to
45% of the frames, due in part to bad lighting, in part to wrong pose or more rarely to occlusions. 

While this study does not provide useful insights into what facial expressions could be accurately recognized using
state  of  the  art  algorithms in  a  naturalistic  test  drive,  yet  it  shows that  the  real  deployment  scenario  presents
challenges than current research dataset don’t capture. At the moment of writing, to the best of our knowledge, no
dataset  exists that  provides annotated video footage from real  drives suitable for automatic emotion recognition
studies. The LISA-P Head Pose Database  (Martin, Tawari,  Murphy-Chutorian, Cheng, & Trivedi, 2012) has not
been released for public use yet and will only provide facial landmarks for eye corners, nose tip and nose corners,
i.e., prominent features specifically chosen for being the least sensitive to facial expressions.

To overcome  this  limitation,  the  study 2,  described  below,  was  designed  to  gather  an  initial  dataset  of  facial
expressions of drivers and explore the use of the driver’s face/head to infer useful parameters about the drive.

(a) (b) (c) (d)

Figure 1: Challenges of in-vehicle facial expression recognition: (a) ideal case; (b) bad lighting
condition; (c) bad pose; (d) occasional occlusions

Study 2
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Eleven participants (9 male, 2 female) were invited to take part in this study, aimed at recording realistic (if not real)
facial expressions of drivers during a simulated drive from the city center of Brisbane to the BNE international
airport.

Along the drive, the participants experience a number a pre-programmed events aimed at eliciting emotive reactions
(see Table 4). Often the participant finds her/him-self stuck into traffic or obstructed by slow vehicles; in one case
the  vehicle  preceding  the  participant  is  specifically  programmed  to  proceed  slowly  and  obstruct  the  road,
accelerating if the participant attempts to overtake. Several intersections or roundabouts force the driver to stop and
get into another traffic flow; the spacing between cars is initially small and increases gradually. Finally, a number of
potentially dangerous situations are programmed, including a vehicle drifting against the traffic as well as a car that
pulls out of a blind intersection failing to give way.

From inside the control room, the research team monitored the reactions of the driver, taking note of the facial
expressions, especially in coincidence with these key events. Additionally, immediately after the driving session, the
subjects were invited to reflect upon the experience, with emphasis on their reactions to the key events. The video
recordings of the facial expressions of the drivers were later used for training the automatic classifiers described
below.

The Advanced Driving Simulator used in the presented research consists of a complete and fully functional vehicle
body installed on top of computer controlled mobile platform. All controls in the cabin, such as steering wheel,
dashboard, pedals, electric windows, etc. are fully functional. All 5 seats are available for studies involving multiple
occupants. A panoramic screen -composed from three 4x3m projected screens - provides 180 degrees of forward
vision, while rear vision is simulated by means of small LCD screen that replace the 3 mirrors.

The cabin is mounted on top of a 6 Degrees of Freedom motion system that provides up to 700mm of motion in each
direction, and up to 39 degrees of rotation in each direction. The motion system adds to the realism of the simulation
providing shakes and a sense of acceleration consistent with the simulated drive. Such complex setup can provide an
immersive  and  fully  interactive  environment,  including  traffic  and  roadway  environmental  characteristics,  and
provide the driver with high-fidelity motion, visual, auditory, and force feedback cues. A video camera mounted on
the dashboard recorded a video of the face of the driver; in 5 of the 11 drives a second camera installed on the
passenger seat recorded a video of the simulated drive and the hands of the driver. 

Figure 2: images captured are processed through a series of differently shaped/oriented Gabor filters
reduced to a series of matrices of luminosity values, and finally linearized in a feature vector

ANALISYS OF THE VIDEO COLLECTED

The video recordings of the driving sessions resulted in about 130 minutes of video footage, or 250.000 frames of
frontal  images  of  facial  expressions.  Of  these,  a  smaller  set  was  used  to  train  an  automatic  facial  expression
classifier, namely those frames in which the face of the driver appeared clearly lighted, not covered by any occlusion
(e.g., one hand kept in the line of sight of the camera) and from a frontal view, thus excluding those sequences in
which the driver glances at the mirrors.
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Implementation

Our approach follows the method proposed in (Lyons et al., 1998), the implementation is based on open libraries:
frames are first processed for face detection by means of an cascade classifier of Haar-like features (Viola & Jones,
2011); the resulting regions are normalized to position eyes/mouth at specific position, determined by means an
active shape model (Cootes, Taylor, Cooper, & Graham, 1995) (ASM1).

Table 2: Confusion matrix of 7 class facial expression recognition: Neutral, Anger, Disgust, Fear,
Happiness, Sadness, Surprise

(%) N A D F H Sa Su

N 99.1 0.1 0.4 0.0 0.1 0.3 0.1

A 12.2 84.6 0.0 0.0 0.0 0.8 2.3

D 2.6 1.0 96.3 0.0 0.0 0.0 0.0

F 4.8 0.0 0.0 92.3 0.0 0.0 2.9

H 1.2 0.0 0.0 0.0 98.3 0.0 0.6

Sa 23.2 3.9 0.0 0.7 0.0 71.2 1.0

Su 2.9 0.0 0.0 0.0 0.3 0.0 96.7

The image is then processed through a series of differently shaped/oriented Gabor filters (see Fig. 2) reduced to a
series of matrices of luminosity values, and finally linearized in a feature vector. The training and evaluation of our
base algorithm for facial expression classification was performed on the CK+ dataset. The CK+ database (Kanade,
Cohn, & Tian, 2000; Lucey et al., 2010) includes 593 sequences from 123 subjects, each of which showing one of
several possible emotions/expressions, and is constantly used as benchmark in related literature for the evaluation of
facial expression recognition algorithms. Of the 593 sequences, 327 are provided with a (consistent and validated)
emotional label based on the presence/absence of specific action units (e.g. dilated nostrils, inner/outer brow raise,
etc.) according to the Facial Action Coding System (Ekman & Friesen, 1977).

Table  2  shows  the  accuracy  of  our  classification  algorithm,  while  Table  3  shows  a  comparison  of  our
implementation to other results found in the literature that have been trained and evaluated on the CK+ dataset. It
can be seen that the accuracy of our implementation is in line with state of the art approaches.

Table 3: Comparison of different approaches for facial expression classification

Author(s) Average 
accuracy

Our implementation 91.2%

Shojaeilangari, et al. (Shojaeilangari, 2011) 92.97%

1  Roughly, an ASM learns a statistical model of the shape of a face, starting from a training set of landmarked 
images, and constructing a map of acceptable deformations and of the expected appearance of the image close 
to each landmark. Then, the fitting algorithm iteratively tries to optimize the match between the texture at each 
landmark’s current position and the expected texture for that landmark by moving each landmark within a 
certain range
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Naika, et al. (Naika C.L., Jha, Das, & Nair, 2012) 83.09%

Mariappan, et al. (Mariappan, Suk, & Prabhakaran, 2012) 87.4%

Jain, et al. (Jain & Aggarwal, 2011) 85.8%

Chew, et al. (Chew et al., 2011) 74.4%

Lucey, et al. (Lucey et al., 2010) 83.3%

However, when applied to images that come from a real or simulated drive, as in the case of the two studies detailed
below, the algorithm hardly provides any meaningful result. We show below that the changes in head pose and
lighting conditions, together with the peculiarities of the driving activity require further processing for selecting
those frames that are more likely to result in a successful classification; this was done during the training phase by
manually pruning the dataset, and in our automatic system by filtering the video sequence through a head pose
classifier.

Hence, a second classifier was trained for automatically selecting the frontal frames from those frames in which the
driver is looking left/right. Such head pose classifier was trained on the Color-FERET dataset  (Phillips, Rizvi, &
Rauss, 2000; Phillips, Wechsler,  Huang, & Rauss, 1998). Additionally, the facial expressions recognized by the
emotion  classifier  were  grouped  in  neutral,  positive  (happiness,  surprise),  and  negative  (anger,  disgust,  fear,
sadness).

Running the two classifiers on the collected images results the in a series of tuples (h , neu ,¬, pos )t  where 

h ∈[−1.1] represents the head pose as it was recognized automatically by the system, with h≈0 if the driver is
looking  straight  ahead,  and  neu,neg,pos∈[0,1]  with  neu≈1  meaning  that  the  system  has  recognized  a  neutral
expression,  neg≈1 meaning the system has recognized a negative (e.g. sad, angry frowned) expression and  pos≈1
meaning the system has recognized a positive (e.g. smile, surprise) expression. Each tuple is representative of a
single frame.

Table 4: The events programmed in the simulated drive in order to elicit emotional reactions on the
drivers’ part

 # Description

 1 Give way with gap acceptance test

2 Turn left with cyclist passing

3 Traffic light changes to amber

4 Right turn with gap acceptance test

5 Traffic light changes to amber

6 Two slow leading cars, blocking the way

7 Right turn with pedestrian crossing

8 Pedestrian with child crossing

9 Leading car going slow, accelerates when trying to overtake

10 Same car, breaks unexpectedly and without visible reason

11 Left turn at roundabout with gap acceptance test

12 Oncoming car going against the traffic
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13 Slow moving car, partially blocks the road

14 Parked car pulling out, failing to signal or give way

15 Car from far right not giving way, almost unavoidable crash

The  goals  of  this  study  is  then  to  identify  possible  algorithms  φ (h , neu ,¬, pos)[ t=0 … t=n ] for  inferring  the
difficulty of the drive based on a (possibly short) observation of the drivers head and face appearance. 5 of the 11
test  drives  were  then  again  annotated  as  to  identify  different  phases  and  special  events  such  as  negotiating
intersections (events 1, 4, 7 and 11) and shocking or dangerous events (events 10, 12 and 15).

Dangerous events

We show empirically  that  dangerous or shocking events can be visually recognized  from video footage of the
head/face of the driver by showing the performances of a classifier, trained on the data collected in the simulated
drive.  15 sequences were chosen, 10 taken during normal drive and 5 taken in correspondence or immediately
following a collision or near miss. The 15 sequences resulted in 4709 frames; hence, in average, each sequence
spans over 314 frames or 10.46 seconds. 

A neural network was trained to classify each frame as belonging to a sequence of normal drive or dangerous event.
The feature vector consists, for each frame, of the values of mean and variance of over a time span of 8 seconds
preceding the frame of head pose and facial expression, resulting from the two classified described above, that is: 

φ (h , neu ,¬, pos )=d ¿).

A leave-one-out strategy was used for training: for all 15 sequences in turn, 1 was reserved as test set and the
remaining 14 sequences were included in the training set. In this way we can positively argue that the network has
learned  to  recognize  the  proposed  behavior,  either  from  different  sequences  of  the  same  driver  or  from  a
corresponding sequence of another driver. The average results are summarized in table 5: a sequence is considered
correctly  classified if  more  than 50% of  its  frames  (cumulatively  reported  in  parentheses)  have been  correctly
classified; an average accuracy of 80% was achieved using the above technique.

Table 5: Confusion matrix of 2 class normal/danger driving condition

 (%) normal drive dangerous event

 Normal 8 (2352 frames) 2 (844 frames)

Danger 1 (291 frames) 4 (1096 frames)

 

Intersections

Giving way and merging into a flow of traffic has been identified as being among the most stressful tasks when
driving, (see e.g.  (J. Healey & Picard, 2000)), and hence it is useful to be able to distinguish such phases from
normal  drive,  for  example in  order  to  adapt  the behavior  of  mobile  phones and other  devices  or  suspend less
important  notifications.  Sections of  normal  drive  can  be  distinguished  from intersections  on  the  basis  of  head
movements. 

Again,  a  classifier  was  trained  to  classify  each  frame  as  belonging  to  a  sequence  of  normal  drive  or  to  an
intersection. The feature vector consists, for each frame, of the values of mean and variance of over a time span of 8
seconds preceding the frame of head pose alone, however in this case the neural network was trained for time series
prediction using the technique of the sliding window: the feature vector consists of a series of 50 measures of mean
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and variance over the last 3 seconds of the head pose value. Single measures are taken at 10Hz, and hence span over
a window of 5 seconds, facial expression is not exploited in this classifier; hence: 

φ (h )=X (( σ2 , μ ) [h ]t=−5 sec …( σ2 , μ ) [h ]t=0)

As before, a leave-one-out strategy was used for training: from a total of 37 sequences (19 normal drive and 18
intersections) in turn, 1 was reserved as test set and the remaining 36 sequences were included in the training set.
The average results are summarized in table 6: 95% was achieved using the above technique.

Table 6: Confusion matrix of 2 class normal/intersection driving condition

(%) normal drive Intersection

Normal 18 1

Intersection 1 17

DISCUSSION AND CONCLUSION

We have presented a novel technique for in-vehicle vision based stress detection aimed at assessing the driving task
demand on an Intelligent Car. Emotional arousal and fatigue are recognized threats, and considered to be involved
in a large number of car crashes. The recognition and interpretation of the driving task demand is then the key to
open the door to a vast panorama of intelligent applications aimed at improving the safety and comfort of the future
cars. 

However, existing techniques for emotion recognition draw from a context-neutral background, and have not been
adequately assessed in a real automotive scenario. As a result, datasets for training and research comparison, as well
as  a  thorough understanding of  the issues,  constraints  and opportunities  that  arise  during a real  drive,  are  still
missing. This work is meant to move a step in such direction.

We have provided  a  detailed  description  of  the  principles  and algorithms required  for  training a vision  based
emotion recognition system. Our results show the feasibility of the approach proposed here, but more important,
point out several constraints and challenges that any real-world implementation will have to face. To summarize, the
contribution of our work is:

We propose a novel technique for automatic inference of driving task demand from visual cues of emotion and
attention. We build on existing techniques adapting to a novel and challenging scenario; our approach combines
facial expression recognition and head pose detection to overcome the limitations of the driving scenario: variable
lighting conditions, occlusions, elusiveness of face expression. 

We report on a test drive experience aimed both at assessing the validity of our approach in the real world and (more
important)  at  uncovering  issues  and  opportunities  that  are  only  faced  out  of  the  lab;  we  show  that  the  real
deployment scenario presents challenges than current research dataset don't capture; yet we show that our prototype
implementation  of  the  proposed  approach  is  capable  of  achieving  remarkable  recognition  rates,  even  in  such
challenging condition;

A number  of  issues  remain  open  and  need  to  be  further  explored.  Further  improvements  in  the  classification
accuracy can be reasonably achieved by gathering more and more samples from real test drives. A general trend in
emotion and behavior detection is to take advantage of alternative, redundant channels and modalities. The in-car
setting  provides  several  such  alternative  modalities,  many  of  which  have  been  barely  explored  for  emotion
detection:  acceleration  and  braking  behavior,  steering  sharpness,  gesture  recognition,  tailgating  detection,  are
promising examples that allow non-invasive implementations even on inexpensive hardware.

Furthermore, while a driving simulator study as the one described here allows to safely and programmatically collect
data on the emotional reactions of drivers, it is clear that the overall goal would be to achieve the necessary accuracy
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for  a  real  world  deployment.  Hence,  the  natural  next  step  will  be  to  replicate  the  study  described  here  in  a
naturalistic setting, so as to improve the proposed approach with real data. 
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