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ABSTRACT

While eye tracking can provide invaluable information on visual cognition, it is uncertain whether the pattern of
one’s ocular behavior could reflect mental processes beyond the mere visual encoding of task-relevant information.
The present study is concerned with the use of eye-movement measures as indicators of the cognitive processing
involved  in  situation  monitoring  and  dynamic  decision-making  tasks.  In  the  context  of  a  computer-controlled
simulation  of  radar-based  risk  assessment,  we  monitored  eye  movements  and  extracted  metrics  relative  to  1)
scanpath, 2) eye fixations, and 3) pupillary response in order to predict the quality of decisions and time taken to
classify aircraft displayed on a radar screen according to their threat level. Based on multiple regressions performed
on almost 10,000 classifications, eye-tracking data can explain 77.9% of the variance in decision time but failed to
predict classification accuracy. However, when regressions were applied to individual differences, eye movements
can predict both classification time (69.2%) and accuracy (45.9%). While the analysis of scanpath and fixation
duration is a good indicator of information seeking and can predict the time taken to make a decision, pupil dilation
appears to be informative on the quality of that decision. These findings show how dynamic, event-based measures
of eye movements could serve as an assessment method that goes beyond traditional usability testing and provide
insights in the design of user interface and decision support systems.
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INTRODUCTION

Dynamic  decision-making  involves  a  sequence  of  multiple  interdependent  decisions  made  in  real-time  in  a
continuously evolving environment. In dynamic environments such as air-traffic control, emergency response and
security surveillance, there are severe constraints to information processing and decision-making. Indeed, situation
uncertainty,  information  overload,  multitasking,  time pressure  and fatigue  may all  impose a  heavy demand on
cognition. System operators must constantly monitor, assess, and integrate incoming information in order to make
decisions in these complex task environments. In order to maximize operators’ performance, there is a need for an
effective technological support of dynamic decision-making (Gonzales, 2005). To benefit fully from technological
advances being made with decision support and user interface technologies, it is essential to first understand the
cognitive processes and limitations of the human operator. 
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One avenue to achieve such an understanding and to characterize the pattern of information processing limitations
related to continuous monitoring and dynamic decision-making tasks is  using eye tracking in a manner that  is
closely linked to the dynamics of the situation (e.g., Vachon, Vallières, Jones, & Tremblay, 2012). The tracking of
eye movement can provide online, non-obtrusive indices of cognitive functioning: Oculometry has been invaluable
in investigating cognitive  processes  such as  those  involved in  reading  and  memory (Rayner,  2009;  Theeuwes,
Belopolsky, & Olivers, 2009). Eye tracking can also offer insights into the design of system interface as well as
diagnostic  information in  usability  testing (Goldberg  & Kotval,  1999).  However,  there is  debate as to whether
oculometry  can  truly  reveal  the  underlying  cognitive  processes  involved  in  monitoring  and  dynamic  decision-
making tasks.

Views are mixed with regards to the extent to which oculometry can reveal the functioning of mental processes.
There is a relative consensus with regards to the view that eye movements can reflect online information processing
(Pearson  &  Sahraie,  2003;  Zelinsky,  2008)  but  some  researchers  claim  that  eye  movements  do  not  indicate
processing that follows the encoding of information (Anderson et al., 2004). We wish to contribute to the testing of
the so-called mind-eye hypothesis—the correspondence between eye gaze and information processing—and address
the issue of whether eye movements may reflect mental processes beyond the mere visual encoding of task-relevant
information. Eye tracking can provide a ‘trace’ of where one’s attention is directed on a visual display. For instance,
in search or monitoring tasks, analyzing the pattern of alternation of fixations and saccades to various regions of
interest  of  a  visual  scene,  assumed to be under  top-down attentional  control  (Privitera,  2006),  can  reveal  how
efficient  is  the search for information. An optimal ‘scanpath’  is  typically considered as being a straight line to
desired target information, with relatively short fixation duration at the target (e.g., Poole & Ball, 2006). Measuring
eye fixations can also reveal the amount of processing applied to objects. In fact, the time spent fixating a location
can be considered as an index of the encoding effort, where longer fixation durations are usually associated to more
engagement in interpreting or relating the component representations in the interface to internalized representations
(e.g., Just & Carpenter, 1976; Goldberg & Kotval, 1999). Besides measurements of eye movements per se, other
eye-tracking metrics can be informative about cognitive processing. For example, pupil dilation, which is influenced
by autonomic nervous system activities, has been shown to be sensitive to various psychological manipulations such
as  cognitive  workload  (e.g.,  Beatty,  1982;  Pomplun  & Sunkara,  2003)  and  arousal  (e.g.,  Murphy,  Roberston,
Balsters & O’Connell, 2011). Nevertheless, it is not clear whether the movements of our eyes can be informative on
the nature of higher-level mental processes such as reasoning and dynamic decision-making. The present study aims
at  testing whether  eye  movement  can be used to  predict  decision quality  as  well  as the time taken to  make a
decision.

The present research adopts an experimental methodology that attempts to bridge the gap between basic and applied
research by maintaining both empirical  control—hence the ability to identify causal  relationships—and external
realism through the use of a synthetic environment or microworld (see Brehmer & Dörner, 1993). In the context of a
low-level  computer-controlled  simulation  of  single  ship  naval  above-water  warfare  (see  Hodgetts,  Vachon,  &
Tremblay, 2014; Rousseau, Tremblay, Lafond, Vachon, & Breton, 2007; Vachon et al., 2012), a single participant
playing the role of a tactical coordinator has to monitor a radar screen representing the airspace around the ship, be
sensitive to changes to air traffic in the operational space, evaluate the threat level of every aircraft moving in the
vicinity of the ship based on a list of parameters, and take appropriate defensive measures against hostile aircraft. In
this study, dynamic decision-making was evaluated through the classification of aircraft according to the level of
threat they posed to the ship.

Beyond the classical  static  analysis of pre-defined regions of  interest,  we adopted an approach  of eye-tracking
analysis that is closely related to the dynamics of the situation and in synchrony with specific events, such as the
sequence of information intake that precedes a decision within a given time window. By tracking the sources of
information that are gathered during decision-making tasks (measures related to scanpath and fixation durations) and
measuring attentional engagement (indexed by pupil dilation) within a decision-time window (the time between the
selection of an aircraft and its classification), a set of well-established eye-movement metrics are tested for their
ability to predict the decision outcome and decision time in the context of dynamic decision-making.
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METHOD 

Participant

Twenty students from Université Laval (10 men; mean age: 22.5 years) reporting normal or corrected-to-normal
vision  took  part  in  the  experiment.  They  received  $20  compensation  for  their  participation  in  a  single  2-hr
experimental session.

Material

Eye movements were recorded with a Tobii T1750 eye tracker at a sampling rate of 50 Hz. The threshold to detect
an eye fixation was set at 100 ms and the fixation field corresponds to a circle with a 30-pixel radius.

We used a low-level, computer-controlled simulation of naval air-defense. This simulation is dynamic and evolves
according to a scenario in interaction with the operator’s actions. Typical scenarios involve multiple aircraft moving
in the vicinity of a ship with possible attacks requiring retaliatory missile firing from the ship. The participant plays
the role of tactical coordinator who must observe and comprehend the operational space, conduct threat assessments
including the categorization and prioritization of threats, and plan and schedule the application of combat power.
See Figure 1 for a description of the various parts of the visual interface.

Task

Participants assessed the level of threat posed by an aircraft by classifying it as non-hostile, uncertain, or hostile.
They had to take into account 5 out of the 11 parameters displayed in the list (see Figure 1), none of them being
intrinsically  more  important  than  the  others.  Each  critical  parameter  can  take  either  a  threatening  or  a  non-
threatening  value.  Participants  were  asked  to  employ the following classification  rule  based  on the number  of
threatening  cues  to  classify  aircraft  appearing  on  their  radar:  An  aircraft  is  ‘non-hostile’  when  it  shows  0–1
threatening cue, ‘uncertain’ when it manifests 2–3 threatening cues, and ‘hostile’ if it exhibits 4–5 threatening cues.
When a decision was made, participants had to click on the corresponding classification button. The white dot
representing the selected aircraft changed color according to the level of threat assigned to it: green (non-hostile),
yellow (uncertain),  or  red  (hostile).  Given  that  threat  level  could  change  over  time,  participants  had  to  check
regularly the parameters of previously classified aircraft in order to determine whether they need reassessment.

Procedure

Following  a  tutorial  describing  the  context  of  the  simulation  and  the  task,  participants  undertook  the  threat-
evaluation task from static screenshots to verify their understanding. Familiarity with the simulation was established
in two training sessions, each comprised of four 3-min scenarios.  After calibrating the eye tracker,  participants
performed  four  randomized  experimental  blocks  comprised  of  four  4-min  scenarios  of  similar  difficulty.  Each
scenario involved 27 aircraft (8 hostile) varying in speed and trajectory. A maximum of 10 aircraft could appear on
the radar screen at the same time.

Eye-Tracking Metrics

Among the various ways in which eye movements can be measured to study cognitive functioning, Poole and Ball
(2006) identified different  categories  of  eye-movement metrics,  each  reflecting  the action of  specific  cognitive
processes. In the present study, we focused on three of these categories: scanpath, fixations, and pupil size. Although
multiple metrics can be extracted in each category, we decided to focus on a single metric per category to prevent
any  potential  multicollinearity  issue.  Scanpath  metrics  relate  to  saccade-fixation-saccade  sequences  of  eye
movements. To index the efficacy in information seeking, we extracted the scanpath length, which is the mean
number of pixels in the scanpath associated with a classification, from the start of the decision to the time when a
decision  is  made.  Longer  scanpaths  indicate  less  efficient  searching.  Fixation  metrics  measure  what  type  of
information is extracted and processed. To estimate the processing (or encoding) time during dynamic decision-
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making, we analyzed the mean time (in ms) spent fixating decision-relevant  parameters  during a classification.
Longer fixation times suggest increased processing of relevant information. Pupillometry measures variations in the
pupil diameter during dynamic decision-making. To index the level of cognitive load, we computed the percentage
of change in pupil size (%CPS) during the classification compared to a baseline level. This baseline corresponded to
the average dilation level computed during all classifications for each participant. An increase in pupil diameter
reflects a higher cognitive load and a greater attentional engagement.

Figure 1. Screenshot of the simulation visual interface. This interface can be divided into three parts:
1) A radar display depicting in real-time all aircraft (represented by a white dot surrounded by a green
square) moving at various speeds and trajectories around the ship (represented by the central point);
2) A parameters list providing information on a number of parameters about the selected aircraft; 3) A

set of action buttons allowing the participant to allocate ‘threat level’ and ‘threat immediacy’ to an
aircraft and, to engage with missile fire a candidate ‘hostile’ aircraft. The red stars indicate the five
parameters relevant to perform the classification task. Threat immediacy and engagement actions

were not part of the present study.
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RESULTS

To determine whether eye movements can predict decision quality and time, we performed multiple regressions
testing the prediction of classification accuracy (i.e. the percentage of correct classification) and classification time
(i.e.  the time between the selection and the classification of  an aircraft)  from the three eye-movement  metrics
(scanpath length, fixation duration, and %CPS). Table 1 presents descriptive statistics for the dependent variables
and predictors computed over 9,719 classifications recorded across all scenarios of all participants. The results of the
two regressions are presented in Table 2.

Table 1. Descriptive statistics for the two dependent variables and the three predictors computed over
all classifications.

Mean Standard
deviation

Dependent variables

Classification accuracy 95.35% 21.06

Classification time 2,811.40 ms 1,331.94

Predictors

Scanpath length 3,223.57 pixels 1654,44

Fixation duration on relevant parameters 907.81 ms 650.63

% of change in pupil size -1.17% 3.71

Note. N = 9,719.

Although  the  regression  performed  on  classification  accuracy  was  significant  (due  to  the  large  number  of
classifications),  the three predictors explained only 0.6% of the variable,  suggesting that eye movements do not
contribute to distinguish between correct  and incorrect  decisions. However,  eye-movement metrics significantly
predicted  77.8% of the variance  in  classification time,  indicating that  eye movements  were good predictors  of
decision time. Among the three metrics,  scanpath length constitutes the best predictor,  explaining 65.8% of the
variance in classification time on its own. Fixation duration on relevant parameters significantly contributed another
12.0% of explained variance while %CPS significantly increased R2 by only 0.1%.

Because classification accuracy is a binary variable (correct or incorrect) we also performed a logistic regression on
these data. Like the linear regression, the logistic regression with the three predictors failed to appropriately predict
decision quality as the 452 incorrect classifications were classified as being correct by the regression model. 

Table 2. Results from the multiple regressions predicting classification accuracy and classification time
from the three eye-movement metrics based on all classifications.

Classification accuracy Classification time

Variable Partial r β Partial r β

Scanpath length -.022 -.024* .803 .682**
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Fixation duration on
relevant parameters -.034 -.036* .594 .373**

% of change in pupil
size .058 .059** .050 .024**

R .083 .882

Adjusted R2 .007 .778

F(3, 9,715) 22.29** 11,376.45**

Note. N = 9,719.
* p < .05 ** p < .001

An inspection of Table  1 reveals  somewhat  high standard deviations for  the dependent  variables,  which could
potentially indicate a high level of individual differences.  Such differences could be indicative,  for instance, of
various  scanning strategies,  which could have  the potential  to  provide  additional  insight  into decision making.
Therefore,  we  performed  the  same  regression  analyses  on  eye-tracking  data  computed  for  each  of  the  20
participants. Descriptive statistics for the dependent variables and predictors are presented in Table 3 whereas the
results of the two regressions are presented in Table 4. 

Table 3. Descriptive statistics for the two dependent variables and the three predictors computed per
participant.

Mean Standard
deviation

Dependent variables

Classification accuracy 94.87% 5.52

Classification time 2,870.19 ms 623.74

Predictors

Scanpath length 3,281.20 pixels 791,13

Fixation duration on relevant parameters 917.31 ms 298.29

% of change in pupil size -1.19% 0.94

Note. N = 20.

With regards to the prediction of classification time, the results from a linear regression performed on individual
data were  similar  to those found when the analysis  was carried  out  on all  classifications.  Indeed,  eye-tracking
metrics  significantly  predicted  69.2% of  the  variation  in  classification  time.  This  time,  however,  both  fixation
duration on relevant parameters and scanpath length contributed almost equally to the prediction, being responsible
for 37.9% and 36.0% of explained variance, respectively. The contribution of %CPS was not significant. In stark
contrast  with  the  failure  of  eye  movements  to  predict  classification  accuracy  based  on  all  classifications,  the
regression based on individual differences revealed that the three eye-tracking measures significantly predict 45.9%
of the variance of decision accuracy. In fact, this level of prediction can be attributed almost exclusively to %CPS,
which explained 45.7% of the variance in classification accuracy on its own.

Table 4. Results from the multiple regressions predicting classification accuracy and classification time
from the three eye-movement metrics based on all individual differences.

Cognitive Engineering and Neuroergonomics (2019)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2101-2



Applied Human Factors and Ergonomics International

Classification accuracy Classification time

Variable Partial r β Partial r β

Scanpath length -.054 -.037 .763 .605**

Fixation duration on
relevant parameters -.333 -.249 .753 .607**

% of change in pupil
size .733 .763** .159 .051

R .738 .861

Adjusted R2 .459 .692

F(3, 19) 6.37* 15.23**

Note. N = 20.
* p < .01 ** p < .001

DISCUSSION

In the context of a simulated, complex dynamic task, we aimed at determining whether eye-tracking data can be
used to predict decision-making efficiency in terms of accuracy and time taken to make the decision. Adopting an
event-based  approach  to  eye  tracking  during  threat  evaluation,  the  results  revealed  that  scanpath  and  fixation
measures  can  be predictive of decision time regardless  of  whether  data were  pooled across  participants  or  not
whereas the pupillary response is a good predictor of decision quality, at least when taking individual differences
into consideration. Overall, these findings confirm that eye movements offer a way to capture ‘online’ cognitive
processing related to information seeking and decision-making.

Of course, there is other ways by which oculometry can tell us a great deal about the pattern of information seeking
and decision-making. Because it interferes minimally with the decision-making process compared to other methods
(Morrison, Marshall, Kelly, & Moore, 1997; Rehder & Hoffman, 2005), eye tracking is an increasingly popular
method  for  process  tracing  and  policy  capturing.  These  analytical  techniques  aim to  characterize  how people
actually make a decision, and extract strategies and heuristics (Ford, Schmitt, Schechtman, Hults, & Doherty, 1989).
Such a dynamic pattern of information seeking as revealed by eye movements can inform our understanding of
dynamic decision-making (Glaholt & Reingold, 2011). For instance, using a similar simulation of maritime dynamic
decision-making,  Lafond et  al.  (2009)  provided  evidence  that  threat  evaluation was based on a  fast-and-frugal
decision heuristic through the analysis of fixations on the key attributes looked at prior to making a classification.
Another interesting approach is the use of formal computational models to enhance the predictive sensitivity and
specificity of eye movements. By exploiting such a technique in the context of a static, probabilistic value-based
decision-making  task,  Cavanagh,  Wiecki,  Kochar,  and  Frank  (2014)  recently  showed  that  gaze  time  and
pupillometry can reflect the operations of dissociated latent decision processes.

Based  on  the  current  approach  of  online eye-tracking  analysis,  the  combination of  time-related  ocular  metrics
appeared to provide very good estimates of decision time. This finding can be summarized as saying: the more
distance the eyes cover and the longer the eyes look at relevant information, the longer it takes for a decision to be
made. Although this may be seen as an obvious result, this predictive power of eye movements can have important
implications  for  the  implementation  of  adaptive  aiding  systems  (e.g.,  cognitive  countermeasures;  see  Dehais,
Causse, & Tremblay, 2011) and adaptive tutoring systems. A critical aspect of adaptive interfaces is to provide help
in a timely and accurate matter (Visser & Parasuraman, 2011). Adaptive automation based on an online prediction of
the  operators’  cognitive  functioning  represents  a  promising  solution  to  this  challenge  (Sheridan,  2011).
Oculometrically-  and  psychophysiologically-activated  adaptive  aiding  is,  in  a  sense,  a  special  case  of  brain-
computer interface wherein the purpose is not direct control but rather monitoring and providing aiding to operators
to enable them to work more effectively (Christensen & Estepp, 2013).  The present findings also showed that
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individual differences in pupillary response can predict a fair amount of variation in decision quality. This suggests
that at the individual level, eye tracking through the online analysis of variation on pupil dilation can be indicative of
the  ability  to  manage workload  and  deal  with  information  overload  and  stressful  situations,  crucial  in  making
accurate decisions. Such a finding is also in line with the adaptive automation approach since it has been claimed
that  individual  differences  in  cognitive  functioning  should  be  taken  into  consideration  as  user  models  in  the
implementation of computer-based adaptive and intelligent technologies (Pronovost, Roberts, & Banbury, 2008).
Overall,  the present  pattern of  results provides  further  support  to  the idea that  the online measurement  of eye
movements, combined or not with other behavioral and physiological measurements can provide information about
the objective and subjective state of an operator within a mission context and then provide a basis for the intelligent
adaptation of computer-based aid or tutor (Banbury, Gauthier, Scipione, & Hou, 2005).

With regards to the mind-eye hypothesis, our findings show some limitations to what eye movements can reveal
about “internal” cognition. Indeed, the correspondence between the pattern of eye movements and high-level mental
processes is not perfect as reflected by the failure to predict the overall pattern of decision accuracy—i.e. without
considering individual differences—based on a combination of various eye-tracking metrics supposed to reflect
different  facets of information processing.  It  is possible that  given the complexity of cognitive functioning, the
relationship between eye movements and cognitive processes occurs at a rather complex level that is not detectable
with a linear  approach.  Nevertheless,  the present  findings illustrate how dynamic, event-based measures  of eye
movements  could  serve  as  an  assessment  method  that  goes  beyond  traditional  usability  testing  and  provide
invaluable insights in the design of decision support systems. 
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