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ABSTRACT 

In an effort to automate manual life science processes for high throughput and accuracy, we previously observed
that perceived operator workload could be used to identify taxing tasks as targets for robotics. However, we also
observed that other factors,  including task time and step count, might influence workload. The objective of the
present  research  was to determine whether  technician perceptions of workload were  driven by process  method
characteristics, specifically duration, number of steps, and numbers of motor and cognitive operations. Confirmation
of influence of these characteristics on perceived workload was expected to provide further direction for automation
development for specific methods. A hierarchical task analysis was prepared for a mercury analysis process and
revealed  various  methods  for  accomplishing  goals.  Methods  included  sequences  of  operations,  which  were
subsequently classified as perceptual, motor or cognitive in nature by using GOMS methodology (Goals, Operators,
Methods, and Selection rules).  A field study was conducted with  three lab technicians completing the mercury
analysis process in three replications. Perceived workload for each method was collected using the NASA-Task
Load  index  (TLX).  Significant  positive  correlations  were  found  between  method  times  and  operation  counts
determined based on GOMS models with technician overall TLX ratings. Motor, cognitive and combinations of both
operator counts were also correlated with TLX physical, mental demand and effort ratings, accordingly. In general,
longer  duration  methods,  including  weighing,  tuning  and  pipetting  steps,  appear  to  pose  high  workload  for
technicians  and represent  priority  targets  for  automation.  Furthermore,  a  sequence  of  recollection  and planning
operations as part of a pipetting task posed the greatest sustained cognitive load for technicians and may represent an
opportunity for use of advanced robotic technology with capacity to act as an assistant to technicians. 

Keywords: Cognitive Workload, Hierarchical Task Analysis, GOMS, Human-Automation Interaction, Life Science
Processes

INTRODUCTION

One research objective of life science laboratories is to develop novel analytical methods to screen construction
material samples for toxic chemicals that are hazardous to the environment in the event of unmanaged disposal. In
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development of such processes, laboratory technicians are initially required to perform manual protocols on samples
of known chemical concentrations in order to achieve an optimal technique. The Center for Life Science Automation
(CELISCA) at University of Rostock (DE) aims to develop automated systems to perform methods as part of such
manual  protocols  in  order  to  meet  high throughput  demands  and test  accuracy  requirements  as  well  as  ensure
technician  safety  and  reduce  cognitive  workload.  In  a  previous  study  (Swangnetr  et  al.,  current  volume),  we
investigated technician perceived workload in a mercury  content determination  process for waste wood materials
(see  Fleischer and Thurow (2013)  for process description). This investigation was intended to provide a basis for
automating  manual  procedures  as  part  of  the  mercury  analysis.  Findings  indicated  assessment  of  technician
perceived  load  could  be  used  to  effectively  identify  taxing  tasks  for  targeting  applications  of  automation.
Prototyping of an automated workstation as part of the process and subsequent analysis of technician workload
revealed significantly lower cognitive load in manual tasks performed with the automation, as compared with purely
manual  process  activities.  However,  lab  technician  workload  ratings  for  task  types,  with  similar  sequences  of
operations and information requirements, were found to be inconsistent between manual and automated systems.
This result may be due to other factors, including task completion time and number of steps, influencing workload.
These factors may represent additional bases for targeting process automation.

On this basis, the present study sought to model life science lab technician manual performance of the mercury
content  analysis  process  and  to  assess  technician  cognitive workload  as  bases  for  effectively  directing process
automation efforts.  The task modeling was integrated with subjective ratings of workload to determine whether
technician perceptions of load were driven by process method characteristics, specifically duration, number of steps,
number of perceptual and motor operations, and number of cognitive operations. Confirmation of influence of these
characteristics on technician workload was expected to motivate use of both workload and task information for
developing automation for specific process methods. The overarching goal of this work was to promote greater
process efficiency and accuracy in analysis of aged, treated-wood construction materials as a basis for safe disposal. 

CONSTRUCTION OF COGNITVE TASK MODEL 

Goals,  Operators,  Methods,  and  Selection  rules  (GOMS)  is  a  cognitive  task  analysis  methodology,  originally
developed by Card, Moran and Newell (CMN; 1983). A GOMS model consists of descriptions of “methods” needed
to  accomplish  specified  “goals”.  The  methods  are  series  of  steps,  or  “operators”  (hereafter  referred  to  as
“operations”), performed by the user. A method can also include sub-goals to be accomplished with return to the
primary method-for-goal. Therefore, methods have a hierarchical structure in GOMS analysis. “Selection rules” are
used to choose the appropriate method, if there is more than one method to accomplish a goal. Users must decide on
a  rule,  based  on  task  circumstances,  in  order  to  effectively  accomplish  the  goal.  GOMS  was  developed  for
decomposition of  procedural  tasks  as  performed by expert  operators.  GOMS has been widely used in  human-
computer  interaction  domain  (e.g.,  Polson  and  Kieras,  1985;  Gray et  al.,  1992;  Salvucci  and  Lee,  2003).  The
methodology has also been successfully applied to other domains, for example aviation (Foyle et al., 2005) and
human-robot interaction (Drury et al., 2007). Since the development of CMN-GOMS, computer-based forms of the
methodology have been created, including the GOMS Language (GOMSL; Kieras, 2005). We have previously used
GOMSL for modeling human teleoperation of a rover in a simple path-following task (Kaber et al., 2011); however,
we have not used this language to represent complex manual and automated procedures in life science processes.
Other task analysis methods, such as hierarchical task analysis (HTA; Diaper, 1989) or goal-directed task analysis
(Endsley, 1993), do not provide detailed structure comparable to GOMSL for task representation, identification of
specific types of perceptual, motor and cognitive operations as part of task performance, or the capability to identify
the flow of operator information processing.

A HTA was initially prepared on the manual mercury analysis process to identify user goals and sub-goals. Methods
for accomplishing goals were also identified. The  HTA was based on review of a standard operating procedure
(SOP), retrospective think-aloud protocols with life science lab technicians (while viewing videos of the manual
process),  and  interviews  with  process  experts  on  task  objectives  and  potential  errors.  Using  the  GOMS
methodology, each task method was further detailed in terms of sequences of operations. (For operations that could
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not be coded using the conventional set of GOMS operators, user-defined operators were used.)  Operations were
subsequently classified as perceptual (P), motor (M) or cognitive (C) in nature. Table 1 shows the goals, sub-goals
and  methods,  obtained  from  the  HTA  for  the  mercury  analysis  process.  The  table  also  includes  numbers  of
perceptual, motor and cognitive operators for each method, obtained using the GOMS methodology. (Note that the
number of operators presented here was based on actual process observations.) 
  

Table 1: Mercury analysis process goals and methods, along with associated numbers of perceptual, motor and cognitive
operators 

Goal: 
      Sub-goal

Method #Perceptual
operators

#Motor
operators

#Cognitive
operators

Sample preparation:
Weigh sample 1.1 Prepare weighing workstation 7 13 17

1.2 Perform weighing of sample 204 150 583
1.3 Clean-up weighing workstation 5 11 10

Pre-digest sample 2.1 Prepare pre-digestion workstation 6 23 12
2.2 Perform pre-digestion (pipetting) of sample 96 66 409
2.3 Clean-up pre-digestion workstation 3 6 7

Digest sample 3.1 Perform microwave digestion 28 50 97
Dilute sample solution 4.1 Prepare sample solution dilution workstation 6 18 19

4.2 Prepare microwave digested sample 3 20 8
4.3 Perform diluting (pipetting) sample solution 141 86 513

Calibration solution preparation 5.1 Prepare calibration solution workstation 13 20 31
5.2 Prepare (pipetting) high standard 54 49 244
5.3 Perform pipetting of calibration solution 61 49 246

Inductively coupled plasma-
mass spectrometry (ICP-MS) 
analysis

6.1 Prepare ICP-MS machine 15 20 21
6.2 Start measurement control program 16 19 67
6.3 Check performance report 18 36 109
6.4 Tune device and prepare batch 63 103 299
6.5 Arrange solutions in auto sampler 5 33 52
6.6 Perform mercury analysis 6 8 27
6.7 Analyze results 82 123 385

Transportation 7.1 Transport sample to lab 3 10 6
7.2 Transport solutions to ICP-MS machine 3 8 6

With respect to the GOMS model, technicians typically performed certain tasks as part of the analysis process by
following only a subset of the methods described in the model. For example, technicians performed pipetting by
either using long-term memory (LTM) or looking at SOPs for specific dissolution procedures. For tasks involving a
variation of looping on a set of GOMS operators (i.e., different a number of process adjustments in each trial), the
average number of adjustments across trials was used to quantify the model. In this study, there were, on average,
five process adjustments when performing sample weighing and/or device tuning methods. Table 2 presents an
example GOMS operation sequence (model code) for a portion of the mercury analysis process in which technicians
performed pipetting of a “standard” solution for system calibration. The Table shows the specific methods to the
goal, the specific cognitive, perceptual and motor operations, as well as their counts, when occurring in sequence.
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Table 2: Example of GOMS operation sequence for mercury analysis process

Goal:
Method

Operation Description Class #

Perform pipetting of mercury 
standard:

Perform pipette using LTM Recall_LTM_item Recall and store in WM <current pipetting task> C 2
Decide: LTM for pipetting parameters is Complete? [Yes] C 1
Store Store <solution name>, <pipetting volume> and 

<pipetting destination> in WM
C 3

Delete Delete <current pipetting task> from WM C 1
Plan pipetting solution Think _of Calculate plan of pipetting solution volume C 1

Store Store <solution volume plan> in WM C 1
Store Store <current solution volume> in WM C 1
Decide: Current solution volume in None? [No] C 1

Get pipette Look_at Current pipette P 1
Store Store <pipette label> in WM C 1
Decide: Have current pipette? [Yes] C 1
Decide: If <pipette label> is correct for <current solution 

volume>? [No]
C 1

Do_UserDefined Put current pipette back M 1
Look_for_object 
and_store

Right pipette for current solution volume 
and store in WM < pipette label>

P
C

1
1

Do_UserDefined Get right pipette for current solution volume M 1
Delete Delete <pipetting label> from WM C 1

Adjust pipette volume Look_at Pipette volume interface P 1
Store Store <pipette volume> in WM C 1
Decide: If <pipette volume> is_equal_to <current solution 

volume>? [No]
C 1

Do_UserDefined Adjust pipette volume M 1
Delete Delete <pipetting volume> from WM C 1

Perform pipetting task Look_at Current pipette tip P 1
Store Store <pipette tip status> in WM C 1
Decide: Have pipette tip? [No] C 1
Look_at Pipette tip P 1
Do_UserDefined Attach pipette tip M 1
Delete Delete <pipette tip status> from WM C 1
Look_at Hg standard solution P 1
Do_UserDefined Asparate Hg standard solution into pipette M 1
Look_at Pipette destination P 1
Do_UserDefined Dispense liquid to Pipette destination M 1
Think_of Can use the same tip for next solution? C 1
Decide: Can use the same tip for next solution? [No] C 1
Look_at Pipette tip trash P 1
Do_UserDefined Discard tip M 1

STUDY PROCEDURE 

A field study was conducted with three professional lab technicians. Each technician was asked to complete the
mercury analysis process with three replications.  Prior to performing the process, technicians completed pairwise
rankings of all six workload demand components of the NASA-Task Load index (TLX; Hart and Staveland, 1988).
The technicians  selected those TLX components that  they considered to  be the most important  contributors  to
workload in the mercury analysis process. They were then informed how the process was broken-down into methods
and steps. An analyst used a custom Android-based application with a smartphone (based on Zhang et al. (2013)
system platform) to record the steps performed by technicians, times, and technician ratings of workload demands
for each method. 
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HYPOTHESES 

It was hypothesized that method times, collected using the smartphone, would be correlated with lab technician
overall  TLX ratings (Hypothesis  (H)1). Subjective ratings of  workload were  expected  to increase  as  task time
increased. Prior studies have examined changes in workload over the duration of task performance (Haga et al.,
2002). In general, task duration has been found to affect workload responses. Mental fatigue appears to accumulate
rapidly under higher demand conditions.  Our  previous study  (Swangnetr et al., 2012) also revealed  a significant
positive linear association of life science technician overall workload scores with  sub-process step time. Longer
duration  tasks  were  subsequently  considered  to  be  priority  targets  for  automation  and  potential  reduction  of
technician workload.

Operation counts obtained from GOMS models were also expected to be positively correlated with perceived overall
workload  ratings  (H2).  Although Kieras  (2006)  stated  that  the relationship  between  operation  counts  and  user
workload is not certain, GOMS model method execution time is determined based on the number of operations that
must be executed to accomplish a method. Therefore, if a correlation between method time and perceived workload
is observed (i.e., in addressing H1), a greater number of operations would be expected to produce higher workload
ratings. Certain TLX demand component ratings were also expected to be associated with specific classes of GOMS
operations (H3). Motor and cognitive operation counts were expected to be correlated with TLX physical and mental
demand components, respectively. A combination of motor and cognitive operator counts was also expected to be
correlated with overall effort ratings. This hypothesis was based on the definitions of the TLX subscales (Hart and
Staveland, 1988) identifying mental and physical demand as being rated based on levels of mental and physical
activity  required by a task, respectively.  According  to  the TLX, perceived  effort  is  based on the level  of  task
difficulty in terms of both mental and physical aspects. Support for H2 and H3 would confirm the use of GOMS
models for representing life science technician workload. Consequently, models could be used to further facilitate
identification of process automation targets beyond high workload methods and at the level of specific sequences of
operations. (TLX ratings (alone) allow for taxing method identification.) 

ANALYSIS AND RESULTS 

Correlation analyses were conducted to determine the degree of association of method characteristics with perceived
workload. Results (see Table 3) revealed significant positive correlations between method times (recorded with the
smartphone) and operation counts obtained from GOMS models with technician overall TLX ratings. Motor and
cognitive operator counts for process methods were also significantly correlated with TLX physical  and mental
demand  component  ratings,  respectively. Technician  perceptions  of  effort  were  also  found  to  be  positively
correlated with the sum of motor and cognitive operation counts. Roughly between 32 and 46% of the variability in
technician perceived workload was explained by the GOMS model characteristics.

Table 3: Correlations between method characteristics and NASA-TLX workload ratings (* - significant at alpha = 0.05 level)

Method characteristics TLX rating components Correlation

Method times Overall workload demand r = 0.439 p <.0001*

GOMS operation counts Overall workload demand r = 0.385 p <.0001*

Motor operation counts Physical demand r = 0.319 p <.0001*

Cognitive operation counts Mental demand r = 0.373 p <.0001*

Motor and cognitive operation counts Effort r = 0.462 p <.0001*
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AUTOMATION TARGETS IDENTIFICATION 

In line with expectation (H1), method times were found to be correlated with lab technician workload ratings. The
longer  duration  methods  appeared  to  pose  high  workload  for  technicians.  An  ANOVA  model  was
subsequently structured to identify those methods with significantly longer durations than
others.  Results (see Figure 1)  revealed  significant  differences  in  completion time among methods (F =
82.4762,  p<0.0001).  Post-hoc  results  indicated  a  set  of  methods,  including  weighing  samples  (ID#1.2),  device
tuning and batch preparation (ID#6.4), and pipetting samples and solutions (ID#2.2, 4.3, 5.2 and 5.3),  to require
significantly longer completion times as compared with all other methods (again see Figure 1). On this basis, these
methods were considered to be targets for automation in order to reduce technician workload.

Figure 1. Post-hoc test results on completion times for each method (means with different letter labels are significantly different
with p<0.05).

In line with H2,  operator counts obtained from the GOMS model were found to be correlated with lab technician
overall TLX ratings. Motor operations, cognitive operations and the sum of counts for both types of operations were
also correlated with TLX physical demand, mental demand, and effort component ratings, accordingly. These results
were in support of H3. The findings also indicated GOMS models could be useful for identifying types of operations
as well as sequences represent opportunities application of automation and/or advanced robotic technology in order
to  reduce  technician  workload.  Among the  TLX workload  demand components,  technicians  rankings  revealed
performance and mental demand to be perceived as the first and second greatest contributors to workload in the
mercury  analysis process,  respectively.  When examining the GOMS model,  it  was also found that  all  methods
required frequent use of cognitive operations for accomplishing goals. On these bases, cognitive operations can be
considered  an important  aspect  of workload in  the mercury analysis  process.  Consequently,  we identified  long
duration task methods that posed the greatest  cognitive requirements for technicians.  Weighing samples, device
tuning and pipetting methods were inspected for sequences of cognitive operations and counts in order to identify
the greatest sustained cognitive load on operators within the methods.
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Table 4 shows the maximum number of consecutive cognitive operations occurring in each method. It can be seen
that  a sequence of recall  and planning operations as part  of pipetting task performance represented the greatest
sustained cognitive load on technicians. This sequence required technicians to perform complex mental processing,
including Think_of “calculate plan of pipetting solution volume” (see Table 2). Based on observation, this specific
operation was difficult for technicians to perform and was error-prone. Technicians had to carefully plan a series of
solution volumes to be pipetted. Such planning required as many as four chunks (coherent pieces) of information to
be maintained in working memory (WM) at any given time, including: 1) a first solution volume; 2) the number of
samples to be pipetted with the first solution; 3) a second solution volume; and; 4) the number of samples to be
pipetted with the second solution. As a result of the store of other information in WM during this sequence, a total of
eight chunks had to be attended by technicians until pipetting was complete. Previous research has suggested that
cognitive overload and potential  errors are likely to occur when more than five chunks of information must be
maintained in WM (Kieras et. al, 1999; Lerch et al. 1989). Therefore, the sequence of recall and planning
of the pipetting task was identified as a  critical  target  for  application of advanced robotic technology with the
capacity to serve as an assistant to technicians and sharing in the cognitive task load as well as address follow-on
perceptual-motor activities.

Table 4: Greatest numbers of sustained cognitive operations as part of long duration methods.

Methods Max no. of cognitive sequence Sequence description

Perform weighing of sample 9 Recall  target  weight,  think of  acceptable  range of  sample
weight, and track current number of sample. 

Tune device and prepare batch 7 Recall acceptable range of signal parameters, wait for stable
signal, and think of how to adjust parameters.    

Perform pipetting samples and
solutions

13 Recall  pipetting  task  parameters  and  plan  for  pipetting
solution volume.

CONCLUSION 

The objective of this research was to model life science lab technician performance in a complex chemical analysis
process and to assess the cognitive workload imposed by various methods as bases for effectively directing process
automation efforts. The findings of the study revealed technician perceptions of workload to be driven by method
characteristics,  including  times,  overall  operation  counts,  and  the  number  of  motor  and  cognitive  operations.
Description of such characteristics, using cognitive task modeling methodologies, appears to be complementary to
the use of subjective workload rating techniques as an approach for identifying and prioritizing tasks automation
applications in order to reduce overall technician workload as well as the potential for task errors. 

The cognitive task model developed in this research identified long duration methods, including sample weighing,
tuning of analytical instruments and pipetting. These methods were also found to pose high workload for technicians
based on subjective ratings. In general, the methods were considered to represent targets for application of process
automation. The cognitive task models also revealed that among all process methods, weighing tuning and pipetting
included the longest sequences of cognitive operations, which were identified by technicians as a major contributor
to  overall  process  workload.  In  specific,  a  sequence  of  task  parameter  recollections  and  planning  of  solution
volumes for pipetting was found to represent the greatest sustained cognitive load on technicians. Consequently, this
sequence of operations was identified as a priority target for use of advanced robotic technology with the capacity to
act as assistants to lab technicians. 

The use of the cognitive task modeling methodology combined with the cognitive workload assessment technique
provided for a higher resolution analysis of the origin of cognitive load for technician and more precise specification
of where potentially complex and costly process automation efforts should begin. The next step in this research is to
perform a functional assessment of the available life science automation and robot technology for application to the
chemical analysis process under study in order to achieve semi- and fully-autonomous operation for high-throughput
of samples and high accuracy in analysis.
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