
Applied Human Factors and Ergonomics International

Human-oriented Design of a Cognitive
Control Unit for Self-Optimizing Robotic

Assembly Cells
Novie Susanto, Marcel Mayer, Raymond Djaloeis, Jennifer Bützler, Christopher Schlick

Institute of Industrial Engineering and Ergonomics of 
RWTH Aachen University 

Bergdriesch 27, D-52064 Aachen, Germany

ABSTRACT

This  paper  presents  the  human-oriented  design  of  cognitive  control  unit  (CCU)  for  a  self-optimizing  robotic
assembly cell. The CCU is designed to simulate human cognition, and on the base of prior knowledge, to adapt to
the changing conditions in the product structure and material  supply. To improve the conformity of the human
operator expectations with the technical systems, two experiments focusing on different models of robot behaviour
based on the different number of human-oriented production rules in the knowledge base are carried out. The results
show that the most-human oriented model leads to the highest performance of the human operator  in terms of
prediction time, task load and predictive accuracy. 
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INTRODUCTION

The development of automation in  high-wage countries helps  producers  to  meet  the  customers’ need  in  term  of
quality   and   costs,  which  subsequently  leads  to  several  competitive  advantages.   To  further  develop  these
advantages, it has  often  been  intended  to  enhance  labour productivity  and reduce  personnel  expenditure  by
using  articulated  robots. However,  advanced  robotized production  systems  often  require  large  investments  and
extensive  efforts  for  configuration  and maintenance,  without  directly  adding  valued  to  the  manufactured
product (Klocke, 2009).  Furthermore, the integration of advanced automation technology into the work system is
difficult, because the development of knowledge, skills and abilities of the human operator must be ensured and both
humans and robots have to work safely and efficient by together (Schlick et al., 2009).

To provide a theoretical foundation for this problem, the role of the human operator in the automated work system
must be analyzed. The extended definition of automation by Mayer et al. (2012) describes that “human labour” in
automated work systems is not habitually replaced.  The  role  of  human operators in highly automated systems is
essential, especially to  carry  out  various  kinds  of  supervisory  control  tasks,  or intervene whenever  errors
occur.   Hence,  the future manufacturing  systems should focus on the integration of  the human operator  in the
production environment according to his or her particular capability in problem solving and innovation (Schlick et
al.,  2002).  The  need  for  the   development  of  experienced  machining operators’   skills  and  knowledge
encourages the design and application of more ergonomic human-machine interfaces  (Luczak et al., 2003). Using
an ergonomic human-machine interface, the human operator can easily evaluate the current situation and state of the
system,  breaking  the  vicious  cycle  of  automation  (Onken  and  Schulte,  2010).  The  human  worker  should  be
considered as an integrated part of automation, leading to joint cognitive system (Hollnagel and Wood, 1999) in
which the technical function and human operator skills act as one combined system. 
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The Cognitive Control Unit (CCU) is a new robot control system based on an architecture of human cognition. It is
developed  as  an  approach  to  achieve  a  better  compatibility  between  the  human  mental  model  and  the  robot
knowledge  base.  It  adopts  the  technical  system  of  seemingly  non-value-adding  tasks,  e.g.  low-level  control
programming of high-expertise workers. The CCU has the ability to replace repetitive, simple, and dangerous tasks
of the operators. It represents a rule-based level processing in a production system (Buescher et al., 2012; Mayer et
al., 2009). A CCU can autonomously plan the assembly processes and react effectively to ad hoc changes occurring
in its sequences, based on a self-developed set of production rules within its knowledge base. This means that CCU
plays a vital role in the design of work systems primarily related to self-optimizing assembly processes (Klocke,
2009). 

The conceptual development of self-optimization is driven by the necessity of an integrated view on production
systems without focusing only on a single element. A self-optimizing system can change and adapt its objective
based  on  the  situation  at  hand.  It  is  able  to  rely  on  its  simulated  cognition  to  carry  out  the  adaptation.  It  is
(semi-)autonomously capable of planning and of learning from its own experience (Mayer et al., 2008). A self-
optimizing production system contributes to the realization of value oriented approaches while increasing planning
efficiency, by reusing its gained knowledge in dealing with new production conditions (Hauck et al., 2009). The
elaboration of self-optimization aims at the simulating goal-directed human behaviour (Mayer et al., 2011). 

To ensure conformity to the operator’s expectations during the supervision of the assembly process (Mayer et al.,
2008), the first step in the design process is to use motion descriptors to model the familiar repetitive motion of the
human hand-arm system for planning and executing the assembly process within the CCU (Gazzola et al., 2007).
When performing a supervisory task, the human operator is continually monitoring the activities in the system, and
comparing them with his/her mental model. Based on that mental model, expectations for the following activities
can be formulated and compared. When the knowledge base of the CCU is extended by integrating production rules
based on human heuristics, then the robot’s build-up sequence can be better anticipated by the human operator.
Moreover, it is better compatible with his/her procedural knowledge of the assembly process and leads to both less
error and less stress (Mayer, 2012). A first laboratory study (Mayer, 2012) exemplarily verifies the predictability of
robot behaviour with small plastic bricks (LEGO bricks). 

This paper contains two studies. The first study is a continuation of Mayer’s experiment. It designs and elaborates
independent factors of the work system to verify the findings of the previous study, and to improve the compatibility
of the work system with human expectation. The independent factors are different models of robot behaviour for
assembly, different kinds of assembly information, different kinds of assembly group, and participants groups. The
consistency of  human assembly strategy  in self-optimizing assembly system is  studied further  regarding  to  the
transfer and adoption of the human behaviour in the technical system. 

The second study deals with the transferability of the assembly strategy of the abstracted product setting into a real
manufactured product, a carburetor. The objectives are replicating the first study results and transferring the human-
oriented designs from a model to a real product. This second study is designed based on the different models of the
robot behaviour, different kinds of assembly groups, cultural background and different ages.

The aim of the studies is to investigate the conformity of robot behaviour with the human operator’s expectation in
human-robot interaction. She/he has to predict the next action of the robot when assembling the product based on an
observed  build-up sequence  using a virtual  reality  simulation. It  is  hypothesized that  the more human-oriented
production rules are encoded in the knowledge base of the CCU, the shorter the prediction times, the lower the task
load and the higher the predictive accuracy for both the LEGO model product and the carburetor.

HUMAN-ORIENTED DESIGN OF THE KNOWLEDGE BASE OF 
THE COGNITIVE CONTROL UNIT USING A SIMPLIFIED 
ASSEMBLY REPRESENTATION (EXPERIMENT 1)

Method
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Experimental Design and Variables

The experimental design is established by considering four independent variables, namely different models of robot
behaviour for assembly task, various assembly groups, kind of assembly information and participant groups.

There are four models of robot behaviour for assembly tasks. Model 1 (the least human-oriented model in terms of
the lowest  number of human-oriented production rules) acts as the reference model.  This basic model of robot
behaviour  contains  only  the  essential  motion  elements  and  sequences  based  on  the  popular  Method-Time
Measurement/MTM-1 taxonomy. Human-oriented procedural knowledge about the assembly task is not included.
However,  this  simulation  model  is  capable  of  performing  all  physical  possible  assembly  sequences.  Model  2
represents a linear combination of the vicinity of the neighbouring parts and the build-up in layer rules. Model 3
represents a combination of neighbourhood and layer rules in a strong relationship which allows only neighbouring
parts within layers. Model 4 (the most human-oriented model in terms of the highest number of human-oriented
production rules) characterizes the full adoption of human assembly motion patterns in the assembly sequence.

Three assembly groups are provided in this experiment for the robot to work with. For every completed assembly
group, there are two interim states representing human assembly behaviours (see Figure 1). 

Assembly groups

Interim states

House

HO1                  HO2

Pyramid

PY1                  PY2

Ship

SH1                  SH2

Figure 1. The assembly groups and their interim states in experiment 1. 

The number of parts being shown in the assembly sequence history in Experiment 1 is respectively five and seven.
The number of five parts shown in the sequence history -known as Corsi Span- is chosen based on the limit of
human capacity regarding short-term memory (Corsi, 1972). A number seven parts is selected as a variation from
the above mentioned five-part example as well as for a further examination of human limit capacity with regard to
an increasing number of assembly information. 

Experiment 1 divides the participants into two different groups according to their culture backgrounds. They are
European and Asian.

The dependent variables in experiment 1 are the prediction time for performing a correct prediction (as an objective
measurement) and the task load assessment (as a subjective measurement).

Procedure

In the first phase, the participants fill in their personal data (e.g., age, level of education, and prior experience on the
assembly task as well as LEGO assembly) that is anonymously collected. After completing the personal data, the
participant is introduced to the apparatus and the experimental environment. Next, the participant is shown a virtual
simulation of an assembly task completed by a robot with the explanation about the sequence on the computer
monitor. The participant is expected to recognize the robot’s work pattern in the sense of the assembly sequence of
the LEGO bricks. The participants must then predict the next brick position using the real object after the robot
finishes  an  interim  state  assembly.  The  NASA-Task  Load  Index/NASA-TLX  method  (Hart,  2006)  is  used  to
evaluate the task load of the participants. 

In the experiment, 48 predictions are conducted in four sessions (12 tasks each) with random order of the robot
behaviour model and the interim state. 

Participants

The total number of participants is 50 participants (15 females and 35 males) with age range of 20-40 years. The
participants grade their assembly experience with an average score of 2.3 (SD = 1.4) ranging from 1(low) to 5
(high).
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Hypotheses

The following null hypotheses (H0i) are formulated:
- The model of robot behaviour (H01), the assembly groups (H02), the number of parts in the history information

(H03), and the cultural background of participants (H04) do not significantly influence the prediction time.
- The model of robot behaviour (H05), the assembly groups (H06), the number of parts in the history information

(H07),  and  the  cultural  background  of  participants  (H08) do  not  significantly  influence  the  task  load  of
participants during the experiment.

A Kolmogorov-Smirnov test is used to examine the normality of data, whereas Levene’s test is used to examine the
homogeneity of variances. Both tests have not shown significant deviation (p > 0.05), thus an analysis of variance
(ANOVA) is conducted to test all hypotheses with a level of significance of α=0.05. 

Results and Discussion

Prediction Time

The ANOVA test result for the prediction time data shows that the p-values for the models of robot behaviour (p ≤
0.001) and the assembly group (p ≤ 0.001) factors are less than 0.05. Therefore, both corresponding null hypotheses
(H01 and H02) are rejected. The p-values of other factors exceed the threshold of 0.05 (p = 0.214 for the history factor
and p = 0.456 for the culture factor). Thus, the corresponding null hypotheses (H03 and H04) are accepted. 

Figure 2(a) shows that Model 4 –the most human-oriented model- yields the shortest prediction time. This finding
indicates that the most human-oriented model in terms of the highest number of human-oriented production rules
(i.e. Model 4) improves the predictability of the assembly strategy pattern and the conformity of the human operator
with the technical system.  Figure 2(b) shows the error bar chart of the prediction time for each interim state. PY2
and SH1 lead to  the shortest  prediction  time,  whereas  HO1 yields  the highest  prediction  time.  These  findings
describe the human tendency to the learning process of the assembly strategy by the interim states design. Human
tends to learn more easily in a strategy pattern based on the peculiarity of the interim states toward the completed
object design. For example, the HO1 design is more difficult to be conceived as a part of house object than the other
designs because it only has the first two of the six layers. The bottom side of house design is covered by the top side
so that the participants cannot see the completed construction inside the house. The neighbourhood rule is explicitly
patterned in this interim state. PY2 and SH1 have the same design so that the participants experience and learn the
strategy more often in this design compared to the other interim state designs. Furthermore, the interim state design
of PY2 and SH1 can obviously be identified as part of the pyramid and ship. Additionally, PY2 and SH1 also have
the least complicated and well-structured design.

(a)                                                                       (b)
Figure 2 The error bar chart of the prediction time for the four different models of robot behaviour (a) and

 the six different interim states (b).
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Task Load 

The ANOVA test result shows a significant difference of task load for the different models of robot behaviour (p =
0.035). Hence, H5 is rejected. On the contrary, H6 (p = 0.642), H7 (p = 0.392) and H8 (p = 0.285) are accepted. Figure
3  shows the  error  bar  chart  of  the  task  load  with  95% confidence  interval  depending  on  the  model  of  robot
behaviour. The participants working with the most human-oriented model in terms of the highest number of human-
oriented production rules (i.e. Model 4) experience lower task load than other models.

Figure 3 The error bar chart of the task load for the four different models of robot behaviour.

Predictive Accuracy

The  predictive  accuracy  is  defined  as  the  relative  frequency  of  the  correct  prediction.  The  chi-square  test  is
conducted to statistically analyze the predictive accuracy of the robot behaviour model. The chi-square test result is
as follows: (3) = 139.482, p ≤ 0.001. The chi square result indicates significant differences between models of
robot behaviour in the predictive accuracy. Figure 4 shows the error bar chart of the predictive accuracy with a 95%
confidence interval for the four models of robot behaviour. Figure 4 shows that Model 4 with the most human-
oriented model in terms of the highest number of human-oriented production rules leads to the highest predictive
accuracy (mean = 96.7%, SD = 3.0%), i.e. 96.7% of the expected brick positions are predicted correctly and only
3.3% incorrectly.  This finding indicates that the human behavioural patterns contribute to a better predictability of
assembly strategy.
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Figure 4 The error bar chart of the predictive accuracy for the four different models of robot behaviour.

TRANSFERABILITY OF HUMAN-ORIENTED DESIGN OF THE 
KNOWLEDGE BASE OF THE COGNITIVE CONTROL UNIT 
(EXPERIMENT 2)

To validate the results of experiment 1, experiment 2 is conducted to examine whether the investigated rules to
ensure human operator conformity can be used to reduce the prediction time and the task load related to an actual
manufactured product. 

Method

Experimental Design and Variables

The experimental design is based on four factors, namely the different models of robot behaviour, kinds of
assembly groups, the cultural backgrounds and the age of the participants. Three different models of robot assembly
based on the production rules are adopted from experiment 1 (Model 1, Model 3 and Model 4).  Model 2 is not
included in study 2 because of the insignificant difference with Model 3 based on the result of study 1. Additionally,
Model 3 is closer to the human strategy rather than Model 2. Hence, Model 3 is selected to examine the consistency
of predictions.  Two products  are evaluated,  namely (1)  products  made from LEGO bricks as before  and (2)  a
carburetor  (see  Figure  5).  The cultural  background  of  the  participant  groups  includes  German  and Indonesian
participants whereas the participants are also divided by age into a younger group (20 – 40 years) and an older group
(41 – 60 years). The dependent variables in the second experiment are the prediction time of performing a correct
prediction (as an objective measurement) and the task load (as a subjective measurement) as before.

No Product Completed  assembly
groups

Interim State
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1 LEGO

Pyramid (PY)            Ship (SH)

              

Pyramid (PY)                Ship (SH)
2 Carburetor Interim state 1                 Interim state 2

Figure 5 The assembly group and their interim states in experiment 2.

Procedure

The procedure is divided into two main phases: collecting of the personal data and training under the experimental
conditions, and the data acquisition. The tasks of the participants are similar to the first experiment. The participant
must predict the next brick or carburetor part position using the real object after the simulated robot finishes an
interim state  assembly.  In  this  experiment,  12 predictions are  conducted in  two sessions (6 tasks  each)  with a
random order of the robot behaviour model and the interim state.

Participants

The experiment involves 60 participants. There are 30 participants for each cultural background divided into two age
groups (15 participants for each age group). The average grade of the participants’ assembly experience is 2.5 (SD =
1.1) ranging from 1 (low) to 5 (high). 

Hypotheses

The following null hypotheses are formulated:
- The model of robot behaviour (H01), the assembly group (H02), cultural background of participants (H03), and

age of participant groups (H04) do not significantly influence the prediction time.
- The model robot behaviour (H05), the assembly group (H06), cultural background of participants (H07), and the

age of participant groups (H08) do not significantly influence the task load of participants.

Both  Kolmogorov-Smirnov  and  Levene’s  test  are  then  conducted  to  examine  the  normality  of  data  and  the
homogeneity of variance, respectively. Both normality and homogeneity tests have not shown significant deviation
(p > 0.05) for the prediction time and the task load. Thus, an analysis of variance (ANOVA) with a significance
level of α=0.05 is conducted to test all hypotheses.

Results and Discussion

Prediction Time

According to the ANOVA, for the products made from LEGO bricks, the age  (p = 0.001)  and model of robot
behaviour (p = 0.005) indicate significant differences due to p-values of less than 0.05. Based on these results, H01

and H04, can be rejected, whereas H02 (p = 0.139) and H03 (p = 0.669) can not be rejected. Figure 6a shows the error
bar chart of the three different models of robot behaviour for the prediction time, whereas Figure 6b shows the error
bar chart for the age factor. As shown in Figure 6a, Model 4 with the most human-oriented model in terms of the
highest number of human-oriented production rules results the shortest prediction time, whereas the younger group
in Figure 6b performs with a shorter prediction time than the older group.

Ergonomics in Manufacturing (2020)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2103-6



Applied Human Factors and Ergonomics International

(a)                                                                                (b)

Figure 6 The error bar chart of the prediction time for the model of robot behaviour (a) and age (b) in the products made from
LEGO bricks.

Regarding the carburetor, the  p-values of assembly group  (p = 0.183), age  (p = 0.502)  and culture  (p = 0.213)
exceed the threshold value of 0.05, so that the corresponding null hypothesis (H02,  H03  and H04 for carburetor) are
accepted. In contrast, H01 can be rejected (p = 0.000). Figure 7 shows the corresponding error bar chart of the three
different models of robot behaviour with 95% confidence interval. Model 4 (which represents the most-oriented
human production model in terms of the highest number of human-oriented production rules) results in the shortest
prediction time.

Figure 7 The error bar chart of the prediction time for the three different models of the robot behaviour in the carburetor.

Task Load 

Based on ANOVA, significant differences on the task load in the products made from LEGO bricks for culture, age
and model factor are found. The corresponding null hypotheses for the culture  (p ≤ 0.001), age (p = 0.005) and
model factors (p = 0.018) can all be rejected. However, an interaction between the culture and age (p = 0.049) can
be confirmed.  A descriptive  statistical  analysis  is  conducted  to  show the  difference  of  task load  based  on the
different models of robot behaviour. Figure 8 shows the error bar chart of the task load with 95% confidence interval
based on the model of robot behaviour. Model 4 leads to the lowest task load. Additionally, a Bonferroni post hoc
test is performed to investigate the pairwise comparison of the culture and age interaction as shown in Figure 9. H 6

(p = 0.562) for the products made from LEGO bricks is accepted, because the threshold of 0.05 is exceeded. 
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Figure 8 The error bar chart of the task load for the three different model of robot behaviour in the products made from LEGO
bricks.

Figure 9 The interaction plot of culture and age for the task load in the products made from LEGO bricks.

According to the ANOVA of the task load in the carburetor experiments, H05 and H06 are both accepted due to
insignificant differences in the model of robot behaviour (p = 0.929) and assembly group (p =0.160) factors.
A descriptive  statistic  is  then  conducted  to  show the  difference  of  the task load based  on the  model  of  robot
behaviour in the carburetor product. Model 4 for the carburetor also leads to the lowest task load as seen in Figure
10. Significant differences are found for culture (p ≤ 0.001) and age (p = 0.013) factors. Thus, H07 and H08 are
rejected for the carburetor experiment. The corresponding post hoc comparison is performed as seen in Figure 11(a)
and 11(b). The T-test result for the task load in the carburetor experiment based on the cultural factor shows a
significant difference (t(179) = 5.591, p ≤ 0.001). The Indonesian participants experience a higher task load than the
German participants. The T-test result for the age factor also indicates a significant difference (t(179) = -2.447, p
=0.015), in which the younger group experiences a lower task load than the older group.
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Figure 10 The error bar chart of the task load for the three different models of robot behaviour in the carburetor.

                                       (a)                                          (b)
Figure 11 The error bar chart of the task load for culture (a) and age (b) factors in the carburetor.

Predictive Accuracy

The predictive accuracy data is analysed statistically by using a chi-square test for the model of robot behaviour
factor. The chi-square test results are (2) = 53.336, p ≤ 0.001 for the products made from LEGO bricks and (2)
= 24.364, p ≤ 0.001 for the carburetor. Figure 12 shows the respective error bar chart of the predictive accuracy with
a 95% confidence interval. Model 4 is pointed out as the model with the highest predictive accuracy for both the
products made from LEGO bricks (mean = 98.4%, SD = 1.5%)  and carburetor products  (mean = 96.1%, SD =
1.3%).
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                         (a)                                                                                 (b)

Figure 12 The predictive accuracy for the three different models of robot behaviour in the product made from LEGO bricks (a)
and the carburetor (b).

CONCLUSIONS AND OUTLOOK

The process of designing a robotic assembly cell for cognitive compatibility requires a cognitive simulation model
that can adapt to the environmental changes in self-optimizing robotic assembly cells. The experiments, which focus
on the adaptation to the human assembly behaviour in the assembly work system, descriptively and statistically
confirm this statement. The robot behaviour that is generated by the most human-oriented  model (in terms of the
highest number of human-oriented production rules) leads to the highest performance of the participants in terms of
shorter prediction times, lower task load and higher predictive accuracy. This paper concludes that the design of
CCU based on the most human oriented model maximizes the conformity between the human operator’s expectation
and the technical system in self-optimizing robotic assembly cells. To improve the understanding of these matters,
further studies of affecting factors of the human cognitive system on designing a technical  system with human
cognitive compatibility for multi-variant products with various assembly lines should be considered.
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