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ABSTRACT

We discuss  the  development  of  innovative  methods  for  evaluating  motor  activity  in  patients  with  Parkinson’s
disease.  Incorporating  both  biomarkers  (heart  rate  variability,  electromyography,  inertial  sensors)  and
phenomenological  components,  this programme is  designed for  use in the patient’s  home,  during normal  daily
activities  and  is,  as  such,  readily  transferrable  to  other  ergonomic  applications.  Our  presentation  will  focus
particularly on wireless and multi-sensor technology developed as an integrated system allowing us to collect multi-
dimensional data sets. Procedures adapted for such ecological situations will be presented, including robust analysis
with regard to impulsive noise and artefacts; analysis of nonstationary signals
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INTRODUCTION

With a view towards personalized medical solutions, the aim of the ECOTECH project is to develop innovative
technology for monitoring human motor activity in real-life situations. Using an integrated approach, with multiple
collaborators  from biomedical,  technological  and human sciences,  this system is  designed to support  a  holistic
approach to patient assessment. Ultimately, this tool may serve to determine risk of falls; provide accurate measures
of patient response to treatment and; inform the planning of other interventions—from the use of compensatory
strategies  to  environmental  adaptation.  To that  end,  a  portable  system of  biosensors  with  onboard  acquisition
technology is currently under development. The integration of biomechanical and electrophysiological data in this
way  will  be  used  to  identify  correlates  between  locomotor  patterns  (gait  activity),  neurophysiological  activity
(electrocardiogram) in daily life activities. Such methodology and technology will be transferable to (i) aging and
other  neurological  disorders,  and  (ii)  activity  conditions  impacting  motor  control  (workplace,  ergonomics
applications).
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Studying complexity of human activities induce different constraints for data acquisition and signal processing as
well as articulation of different types of data. Compromise between number of sensors and size of equipment has to
be found on pertinent criteria.  Sensors have to be reduced in size and selected on their pertinence for accurate
pattern recognition of motor activity. The development of automatic data processing represents a critical problem
related to the large real life activities studies. Moreover, in these non-standardized conditions, data collecting leads
to different problems of signal processing. Amongst these, we mention the nonstationarity of the time series data
(i.e. statistical properties of a process change with time) and the disturbance of its measurement which leads to
reduce the signal-to-noise ratio and generate artefacts.

Gait activity and its disturbances will be monitored by means of: 

kinematic sensors, combining three orthogonal gyroscopes (angular velocity), accelerometers (acceleration and tilt
orientation)  and  magnetometers  (compass)  to  form an  inertial  unit;  the  data  fusion  from these  complementary
sensors allows to offset and to remove the span drift by continuous correction of the position and orientation of each
sensor  data  (Bachmann,  2000);  placing  inertial  unit  on  each  human  body  combined  with  radio  frequency
communication , it allows tracking orientation and location of these segments; 

electromyography  (EMG),  providing  a  measure  of  the  bioelectric  manifestation  events  that  controls  the  motor
activity; this signal is sensitive to different factors including neural control strategies (recruitment/derecruitment of
the functional units of the muscle) and local fatigue (Farina et al., 2004); Moreover, the relative shift of electrode
with  respect  to  the  location  of  the  active  muscle  fibre  has  to  be  taken  into  account  in  dynamic  measurement
conditions (Farina, 2006); in these condition the degree of nonstationarity of the signal is high and require proper
signal processing approach when spectral analysis is planned (Merletti et al., 2004). 

heart rate variability (HRV), providing information about the overall state of the organism; indeed, HRV is sensitive
to  the  autonomic  nervous  system modulation  and  hence  sensitive  to  different  factors  including health,  general
fatigue, exercise, stress etc. (Rajendra et al., 2006; Task Force, 1996). HRV is obtained from the measurement of the
electrocardiogram (ECG) and it refers to variation of the beat intervals. In a similar way to EMG, a proper signal
processing of the HRV has to be implemented: the conditions of data acquisition induce particular characteristics of
the observed signals (nonstationarity, artefact etc.) which have to be taken into account in any development and
application of signal processing methods.

In  the  present  document,  we  briefly  outline  the  current  technology  which  allows  the  portable  collection  of
electrophysiological  data  and  its  wireless  transmission;  and  then  beyond  that  we  will  propose  methodological
procedures and alternative computations of classical EMG and ECG signals processing in order to reduce the errors
of the estimators extracted during dynamic conditions with the aim to automate the calculations. 

THE WIRELESS PHYSIOLOGICAL SIGNAL RECORDING 
MICROSYSTEM

Figure 1a. is the scenario of the proposed wireless physiological signal recording microsystem. The system includes
wireless sensor nodes for sensing ECG, EMG, EEG and kinematics signals, and the mobile phone or laptop for the
information hub, controlling the data acquisition procedure and recording data. Figure 1b. shows the functional
block diagram of the universal sensor node. The physiological signal measured from the signal probe will first be
amplified (Signal Amplification), and then be filtered out signals beyond interesting bandwidth (Filter). Finally,
after signal digitization (analog to digital converter, ADC), a wireless interface transmits the measured signal back
to the information hub for further signal processing and recording. The sensor node is implemented configurable
with tuneable amplification gain and variable filter bandwidth. A micro-controller (µP) controls the measurement
procedure and parameter setting. (Lin et al., 2013; Chan et al., 2012)
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Figure 1. Scenario for the wireless physiological signal recording microsystem

The proposed universal sensor node is implemented with a printed circuit board (PCB) for sensor node circuits and
battery integration (sensor node board). Button batteries are adopted (The grey circles in Figure 2.). The form factor
for one sensor node board is 8cm x 3.2cm x 0.6cm. The power consumption is about 1mW, and the sensor node can
last for 3-4 hours continuous recording.

Figure 2. Implementation of the proposed sensor node (sensor node board).

ELECTROMYOGRAPHY

Surface EMG is a non-invasive means (no-traumatizing and no-cumbersome) to study the neuro-muscular system.
Information on coordination, force production, motor command or fatigue can be extracted about it. This is the
reason why EMG is usually used within the framework of studies on human motor and in particular concerning
neuromuscular fatigue. To this end, the spectral EMG analysis has been widely used. The classical parameters used
to track the fatigue in the spectral domain are the mean (MNF) or the median frequencies (MDF, splits the spectrum
into  two  parts  of  equal  power).  These  parameters  shift  to  lower  frequencies  during  fatigue  (De  Luca,  1984).

Technology, Higher Education and Society (2020)

https://openaccess.cms-conferences.org/#/publications/book/978-1-4951-2110-4



Applied Human Factors and Ergonomics International

However, surface EMG is a complex signal depending on many factors. That is why it is not always easy in giving a
physiological interpretation, especially when EMG recording is performed during motion (dynamic contraction).

Muscle Fibre Motion

During dynamic activities, many confounding factors intervene in the surface EMG generation/detection process
(Merletti  et al.,  2004). Among them the relative shift of the muscle fibres with respect  to the electrodes is not
adequate  to  ensure  a  proper  location  of  the  electrode  over  the  entire  angular  range  of  the  joint.  Hence,  it  is
recommended  that  the  electrodes  be  placed  as  far  away  as  possible  from  the  innervation  (defined  by  the
neuromuscular  junction locations)  and  tendon zones  (the  atlas  of  innervation  zones  from Barbero  et  al.,  2012
provides  clarification on this  issue).  Moreover,  the simple act  of  muscle fibres  motion creates  variation of  the
surface EMG induced by the modification of the conductivity of the tissues (Farina, 2006) and those irrespective of
physiological consideration. So the first disposition is on the methodological level and it was recommended that the
EMG analysis should be done with respect to the angular position of the joints (Farina, 2006). The inertial unit
measurements will be supplied synchronously with those of the EMG in order to provide information concerning the
positions of the body segments. 

Nonstationarity

The representation of the frequency domain is given by the spectrum representation. The energy distribution is plot
according  to  the  frequency  domain.  In  order  to  carry  out  this  representation,  the  signal  recorded  has  to  be
transformed from a temporal function to a frequency function. The power spectra density (PSD) of the EMG signal
(energy distributed mainly in the 20-300 Hz band) can be computed using different transform methods. The most
popular is the Fourier transform (FT). This method gives a perfect frequency resolution as it supposes a window
analysis infinite in length (in practice, the entire length of the signal of interest). The counterpart of the FT is a loss
of the time information. Hence, this method is most suitable when assessing stationary signal. Assumption that is not
satisfied for EMG recorded during dynamic contraction. A high degree of nonstationarity of the EMG signal was
reported in this condition (Merletti et al., 2004). That is why joint time-frequency analysis methods were developed
to track the modification of the frequency content. The first proposition has to be carry out by Gabor (Gabor, 1946)
developing the short time Fourier transform (STFT) a method derived from the FT. The former divided the long
term signal into small enough segments using narrow analysis windows to ensure a wide-sense stationarity holds
inside the segments. However, this window function introduces a problem that refers to the Heisenberg uncertainty
principle. Indeed, the window function has a finite length. A broad window of analysis will support the frequency
resolution and will  disadvantage the temporal  resolution and conversely with a small  window of analysis. This
terminology can be misleading. The principle of Heisenberg does not describe a limitation to our knowledge of
reality; it describes reality. The more one function is concentrated on a narrow band of time, the more the frequency
band given by its transform of Fourier is broad; the more the frequency band of a transform of Fourier is restricted,
the more the function is extended in time. The former will give an adequate representation of high frequencies and
the latter of low frequencies. This means that it would be interesting to have a transform method which adapts its
analysis window to the analyzed frequency band. This property is proposed by the wavelet transform method. The
wavelet transform acts as a “mathematical microscope” in which one can observe different parts of the signal by just
adjusting the focus (Karlsson et al., 2000).

The wavelet  transform constitutes  an alternative to  the time-frequency analysis suggested by Gabor.  It  has  the
advantage of not requiring an assumption on the stationary nature of the analyzed signal. The wavelet term defines
small waves through which the signal to be analyzed will be observed. These small waves break up the analyzed
signal at the same time into time and frequency. The principle of this analysis proposed by Morlet (Grossmann and
Morlet, 1984), instead of keeping fixes the size of the window and to vary the number of oscillations inside this
window (principle of the STFT), it is to keep constant the number of oscillations and to vary the size of the wavelet,
by dilating it or by compressing it. Dilatation of the wavelet causes to stretch the oscillations, therefore leads to
lower their frequency; compression causes to contract the oscillations, therefore leads to higher frequencies. Morlet
could  then  locate  the  high  frequencies  with  the  compressed  wavelet,  and  study  the  low  frequencies  with  the
stretched wavelet (Figure 3: Wavelet shown in white color). This means that he obtained a finer temporal resolution
and a less frequency resolution for the high frequencies and conversely for the low frequencies. These results thus
took into account the nature of the analyzed frequency ranges. This approach is called continuous wavelet transform
(CWT). 
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The use of the wavelet transform, in the field of the study of the bioelectric signals, starts from the beginning of the
years 1990 (see the tutorial by Samar et al., 1999). Since the studies by Sparto et al. (1997) and Xiao and Leung
(1997), this technique was applied by various authors for the study of EMG signal (Arikidis et al., 2002; Bercier et
al.,  2009; Conforto et  al.,  1999; Karlsson et  al.,  2000; Panagiotacopulos et  al.,  1998;).  Other  methods make it
possible to calculate time-frequency distributions; such as the STFT, the Pseudonym Wigner-Ville, or the Choi-
Williams. However, the comparative study by Karlsson et al. (2000) has reported a statistical decreased performance
for these latters compare to the CWT.

The continuous wavelet transform (CWT) of the signal x(t) is defined by:

CWT x(a , b)=∫ x (t)ψa ,b
❑

(t )dt    a>0
a represents the scale factor which allows to compress  (a>1) or dilate (a<1) the wavelet,  b represent the factor of
translation which makes it possible to define the moment of analysis on the time series x(t), ψa , b(t) is obtained by

applying the translation and scale factors to the wavelet mother ψ (t).

The problem with the wavelet transform is the parameter setting of the mother wavelet. Indeed, there exist many
families of wavelets and each one can be parameterized in various manners (Samar et al.,  1999). Following the
choice of the wavelet family, the baseline characteristics of the mother wavelet have to be defined, i.e. the number of
oscillations and the time-base setting. These points have been examined by the following example comparing the
wavelet results with those of the STFT. 

sEMG  recording  was  detected  from  the  right  vastus  lateralis  muscle  by  means  of  electrodes  with  5-mm
interelectrode distance in bipolar configuration during a cycling exercise. EMG signal was amplified and sampled at
2000  Hz.  Two burst  sEMG activities  were  analyzed  (Figure  3.).  The  choice  of  the  wavelet  and  the  baseline
characteristics  for  analysis  EMG were  carried  out  in  an empirical  way with a  “comparable”  parameter  setting
between the two methods (CWT and STFT). The STFT analysis was conducted using two different windows, one
sets at 400 samples (i.e. 400/2000 = 200 ms) and a second sets at 100 samples (i.e. 50 ms), the time-frequency
spectrogram results were presented in the figure 4. The CWT was conducted as described by Karlsson and Gerdle
(2001). Wavelet analysis was performed using the complex Morlet wavelet (MATLAB Wavelet toolbox) with two
different designs. One first mother wavelet sets at 120 Hz oscillation and 200 ms time-base and a second sets at
100 Hz oscillation and 50 ms time-base, the time-frequency scalogram results were presented in the Figure 5. From
the results of the time-frequency images, the median power frequency (MDF) was computed for each of the two
burst EMG activities and the results were presented in the figure 6. 
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Figure 3. Representation of the vastus lateralis raw sEMG (two bursts) during a cycling exercise. 
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Figure 4.  Time–frequency image computed using the Short Time Fourier Transform from the 2 bursts of the  vastus lateralis
sEMG; two window functions were used, one sets at 200 ms (upper panel) and a second one at 50 ms (lower panel); energy is
coded by the color scaled (from dark blue to dark red colors, energy increases)
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Figure 5. Time–frequency image computed by mean of the wavelet transform from the 2 bursts of the vastus lateralis sEMG; the
analyzing function is the complex Morlet wavelet with two different designs: upper panel, the mother wavelet is set at 120 Hz
oscillation and 200 ms time-base; lower panel, 100 Hz oscillation, 50 ms time-base; the white lines are some illustrations of
various scales of wavelet; energy is coded by the color scaled (from dark blue to dark red colors, energy increases) 
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Figure 6. Median frequency kinetics of the vastus lateralis sEMG, during the two burst activities; calculated from the PSD of the
STFT and the CWT (blue and red, respectively); upper and lower panels with a corresponding larger and shorter windows/time-
base, respectively.
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Comparing  the  upper  and  lower  panels  of  the  Figure  4,  the  frequency  resolutions  decreased  while  the  time
resolutions increased (from upper to lower panels), using the narrowest window function of the STFT. Such is the
case with the narrowest base-time of the mother wavelet (Figure 5, from upper to lower panels). This leads to a
greater kinetics of the MDF (Figure 6, from upper to lower panels). Comparing the STFT and the CWT for “close”
sizing, MDF from the CWT usually expressed higher kinetics (Figure 6). These differences can be explained by the
varying scale in the CWT procedure with respect to the frequency domain which is not the case with the STFT
procedure. The delicate stage of the CWT is the choice of the type of the mother wavelet. In practice, the choice will
be based on the similarity in the shape of the signal of interest and those of the mother wavelet. The second stage is
the setting of the mother wavelet, the oscillation frequency and its time-base. This step has been carried out in an
empirical way taking into account the temporal duration of the burst EMG activity and the frequency range of the
signal. 

HEART RATE VARIABILTY 

The variation in the time interval between consecutive heartbeats of electrocardiogram is referred to as the heart rate
variability (HRV) and is controlled by the autonomic nervous system (ANS): the parasympathetic (vagal nerve) and
the sympathetic  branches.  The skilful  linkage to  these both branches is  defined as the sympathovagal  balance.
Hence, the HRV is a useful means of studying the cardiac adjustment. It provides information about the ANS’s
status which is dependent on numerous factors such as health/disease, stress, exercise/rest, posture (seat, supine, tilt)
(Rajendra  Acharya  et  al.,  2006; Taks Force,  1996).  These two ANS activities can be dissociated in  respective
frequency domains with the parasympathetic branch in the high frequency domain (HF) and the both branches in the
low frequency domain (LF) (Pagani et al., 1986). The parametric (model based) power spectrum estimation is one of
the classical methods to study the frequency domains of the HRV (Task Force, 1996), as it allows smoother spectral
component of preselected frequency bands with easy identification of each HRV components (HF and LF bands).
This reference method has been compared with other methods developed and designed to circumvent the problem
raised by the R-R signal.

Noise and Artefact

Bioelectrical  signals  (electrocardiogram,  electromyogram  and  electroencephalogram)  are  recorded  through  an
acquisition chain starting with electrodes placed on the skin delivering a signal which is amplified. These two-steps
are especially sensitive to noise. Indeed, the contact between electrodes and skin may vary and in fact can lead to
fluctuation in the electric impedance and the electronic circuitry used produces its own noise of which the amplifier
is the most important (Ortengren, 1996). The former generate higher noise in natural motion (i.e. dynamic motion).
That is why the R-R signal is often polluted by impulsive noise and artefacts due to ectopic heartbeats (unevenly
sampled  or/and  missing  data).  Therefore,  it  is  relevant  to  develop  robust  processing  to  such  artefacts  for  a
monitoring device purpose. A non-linear signal transformation called the phase-rectified signal averaging (PRSA)
was proposed to circumvent this problem in (Bauer et al., 2006), later applied to the electroencephalogram signal for
a time-frequency representation (Jabloun et al., 2009) and proposed to analyse the modification of the HRV during
the stand-test (Jabloun et al., 2010). PRSA provide a higher sensitivity for detecting dominant frequencies because it
is designed to eliminate non periodic components, to cancel artefacts and to reduce impulsive noise. 

In order to observe these properties we have simulated signal. This latter is generated following typical spectra that
approximately match the PSD at supine rest condition as defined in the study by Mateo and Laguna (2000). A very
low frequency trend, additive white Gaussian noise and impulsive noise are then added to the simulated signals in
order to obtain realistic artificial R-R signals (Figure 7A.). The PRSA spectra result (Figure 7C.) was compared to
those with Yule-Walker AR PSD estimate (Figure 7B.). All spectra were normalized to have a total energy equal to
one. From the PRSA spectrum Figure 7c, one can observe that the significant higher power is located in the HF band
(above  15  Hz)  compared  with  the  LF  band  (below  15  Hz).  This  result  gives  a  well-established  knowledge
background which sets out a sympathovagal balance emphasized greater parasympathetic activity compared with
sympathetic activity during supine position (task force 1996), while AR method highlighted this sympathovagal
responses  to a lesser extent.  The advantage of the PRSA method is given by its  ability to cancel  non-periodic
components,  noise and especially impulsive noise thanks to its averaging process and its phase synchronization
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(Jabloun et al., 2010). 
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Figure 7. HRV signal analysis (A) Simulated R-R signal composed of 500 samples embedded in an additive white Gaussian and
a very low frequency trend and impulsive noise; (B) the parametric PSD estimation; (C) the spectra of PRSA estimation

Frequency Band Analysis

The other difficulty encountered in the frequency-domain processing of the R-R heartbeats interval is the fact that
the  LF and  HF bands  are  predeterminated  with  a  fixed  frequency  ranges.  However,  different  ranges  of  these
frequency bands have been reported in the literature. Particularly the LF band which has been set up at 0.01–0.15 Hz
(Novak et al., 1993), 0.02–0.15Hz (Cerutti et al., 1995), 0.03–0.15 Hz (Malarvili et al., 2007), 0.04–0.15 Hz (Malik
et al., 1996), 0.045–0.15 Hz (Pichon et al., 2004) or 0.05–0.15 Hz (Naidu, 2005) and depends of the population
being studied and the data collection requirements. Moreover, in the study by Lewis et al. 2007, it has been reported
that the upper boundary of the HF band during exercise activity increased with the exercise intensity. It can be noted
that the only permanent threshold is the 0.15 Hz crossover frequency between the LF and HF bands. That is why
classical rigid frequency cutting to estimate these frequency bands could be less relevant than adaptive method like
the Gaussian shape mixture estimation procedure (CGM) proposed by Daoud et al. (2013).  This point has been
examined by the following example comparing the Rigid cutting estimation with those of the CGM. 

Methods were compared from real ECG data recorded during a mere stand-up position without specific activity.
From the ECG, the R peaks have been extracted (Figure 8A.) by means of the Hamilton and Tompkins procedure
(1986). The time-frequency estimation (Figure 8B.) was conducted computing a STFT. The power estimation of the
LF and HF were computed using the Rigid Cutting (Figure 8C) and the CGM (Figure 8D) methods. 
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Figure 8. (A) R-R intervals, recorded during a stand-up position without movement; (B) the Power Density Spectrum estimated
by STFT, the white line represents the HF-LF limit at 0.15 Hz; (C) HF power estimated (P HF arbitrary unit); (D) LF power
estimated (PlF arbitrary unit); black and red lines represent the values computed by mean of the rigid cutting and CGM methods,
respectively
It can be noticed, even in a stand-up position without specific activity, that HF and LF band reflect variations of the
power. For example, a marked energy increase and then decrease can be observed in the time region of 140 s (Figure
8B, C and D). The CGM method seems to be most appropriate than the classical rigid cutting. Indeed, CGM seems
to better monitor these variations as it is shown in the figure 8C, with greater kinetics behaviour from the CGM
results than the rigid cutting. This assertion has been supported by the simulated study by Daoud et al. (2013)

CONCLUSION 

In the light of onboard and wireless technologies progress it is able to collect large and diverse data during daily life
activities. This allows designing experimental devices which have been previously available only under laboratory
conditions.  However,  collecting  data  under  real  life  conditions,  various  signal  issues  will  occur  including
nonstationarity,  noise  and  artefacts.  Hence,  it  is  essential  to  develop  relevant  signal  processing  that  take  the
constraints  mentioned earlier  into account.  Moreover,  despite improving the signal  processing,  interpretation of
electrophysiology data will remain a complicated task. Indeed, many factors contribute to the electrophysiological
signals and part of them cannot be controlled under nonstandardized condition of data acquisition. It is therefore
necessary  to  require  the  cross-referring  data  from  biomarkers  with  direct  observations  such  as  that  from
ethnographic approach.
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