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ABSTRACT 

Face tracking as innovative and unobtrusive sensor technology offers new 

possibilities for driver state monitoring regarding discomfort in automated driving. 

To explore the potential of automated facial expression analysis, video data of two 

driving simulator studies were analyzed using the Visage facial features and analysis 

software. A gender-balanced sample of 81 participants between 24 and 84 years took 

part in the studies. All participants were driven in highly automated mode on the same 

standardized track, consisting of three close approach situations to a truck driving 

ahead. By pressing the lever of a handset control, all participants could report 

perceived discomfort continuously. Tracking values for 23 facial action units were 

extracted from multiple video camera streams, z-transformed and averaged from 10 s 

before pressing the handset control until 10 s after to show changes over time. Results 

showed situation-related pressing and stretching of the lips, a pushback-movement of 

the head, raising of inner brows and upper lids as well as reduced eye closure. These 

patterns could be interpreted as visual attention, tension and surprise. Overall, there 

is potential of facial expression analysis for contributing information about users’ 

comfort with automated vehicle operations. However, effects became manifest on 

aggregated data level; obtaining stable and reliable results on individual level remains 

a challenging task. 
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INTRODUCTION 

Technological developments make video-based face tracking attractive as in-vehicle 

driver state sensor for automated vehicles. Video cameras are relatively inexpensive, 

unobtrusive, consume little space and can potentially measure several driver state 

properties based on tracking of head-, eye- and body movements. In addition, facial 

expressions can be detected and analyzed as a source of information about the 

drivers’/users’ current state. Facial expressions as changes in the movements of 

specific muscles or muscle groups represent a basic channel for communicating 

emotional states. The Facial Action Coding System (FACS, Ekman et al., 2002) 

encodes such movements systematically into Action Units (AU), which represent 

momentary changes in facial appearance (e.g. lip presser) without interpreting the 

meaning of expressions. Traditional manual coding of these AUs has nowadays been 

replaced by automated computer vision algorithms (Ko, 2018). As a consequence, 

automated facial expression analysis has already been investigated in the automotive 

context to detect stress, fatigue, distraction or frustration (Ihme et al., 2018) as well 

emotional reactions to specific automated driving maneuvers (Domeyer et al., 2019). 

Monitoring users’ comfort/discomfort with automated vehicle operations by facial 

expression analysis could improve human-machine interaction in automated vehicles; 

based on the idea of a vehicle-driver team, knowing each other’s current states and 

acting accordingly. Automated vehicle operations include the full range of vehicles’ 

behavior such as acceleration, deceleration, gap acceptance, lane keeping, car 

following etc. (Smith et al., 2018). As vehicle behavior is related to specific and 

dynamic driving situations, continuous comfort monitoring is indicated to ensure a 

positive and comfortable automated driving experience. Comfort is considered as a 

main driver for higher level automated driving, next to efficiency, safety, accessibility 

and social inclusion (ERTRAC, 2019). In automated driving, new comfort aspects 

become important such as motion sickness, trust in the system, apparent safety, 

controllability, familiarity of vehicle operations as well as information about system 

states and actions (Domeyer et al., 2019; Beggiato, 2015; Hartwich et al., 2018). 

Thus, to explore the expected benefits of automated driving, acceptance needs to be 

ensured by avoiding unpleasant experiences of discomfort related to these new 

aspects. Additionally, these comfort aspects are not just relevant for acceptance but 

they can have safety impacts, too. Unexpected vehicle operations could lead to 

unnecessary and even safety critical driver interventions, for instance if apparent 

safety is perceived as compromised (Techer et al., 2019). 

Thus, the present study aimed at investigating the potential of automated facial 

expressions analysis for estimating discomfort with automated vehicle operations in 

a driving simulator. Changes in AUs were analyzed by combining data from two 
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driving simulator studies. In both studies, all participants experienced exactly the 

same fully automated close approach situation to a slower truck driving ahead three 

consecutive times. This specific situation was primarily chosen because short 

distances are one of the most mentioned cause for discomfort as a co-driver (Beggiato 

et al., 2019) and keeping comfortable distances is already important for current 

assistance systems. In addition, the high standardization of this particular scenario 

allowed for collecting larger amounts of data to analyze AU-changes in exactly the 

same situation. Using a handset controller, participants could continuously report 

discomfort to make sure that all analyses relate to subjectively perceived discomfort. 

The present analyses extend previous works (Beggiato et al., 2020), where data from 

just one study and also just one video camera with an older face tracking software 

version has been used. The new analyses combine data from 81 participants, two 

video cameras in Study 1 and four video cameras in Study 2 using the most recent 

available software version 8.7 of the Visage facial feature detection and face analysis 

SDK (visagetechnologies.com). 

METHODS 

Driving simulator studies setup. All data was acquired in two distinct driving 

simulator studies including the exactly identical automated drive. Both studies were 

conducted with different participants in a fixed-base driving simulator (Software 

SILAB 5.1) with a fully equipped interior and a 180° field of view (Figure 1A). The 

investigators prerecorded a three-minute drive, which was replayed while the 

participants sat in the drivers’ seat. Pedals and the steering wheel were inoperative, 

pretending that all vehicle operations were performed automatically. The trip 

included three consecutive close approach situations to a slower truck driving ahead, 

intended to provoke discomfort. The own vehicle drove at a constant speed of 

100 km/h and approached the truck driving at 80 km/h. At a relatively short distance 

of 9 m, automated braking was initiated, resulting in a minimum time to contact of 

1.1 s (4.2 m). To assess perceived discomfort, all participants were instructed to press 

the lever of a handset control accordingly during the whole trip (Figure 1B). Two 

video cameras were installed in Study 1 and four video cameras in Study 2 to capture 

the driver’s face. In Study 1, a GoPro Hero 5 camera (1280 x 720 pixel, 50 fps, 

Figure 1C) was mounted in a central position below the instrument cluster behind the 

steering wheel as well as an Intel RealSense SR300 camera centrally over the steering 

wheel (1280 x 720 pixel, 30 fps, Figure 1D). In Study 2, two GoPro Hero 5 cameras 

(1920 x 1080 pixel, 50 fps, Figure 1E+F) were placed at the left and right side behind 

the steering wheel below the instrument cluster. The Intel Realsense SR300 camera 

(1280 x 720 pixel, 30 fps, Figure 1G) was again placed at the central position over 

the steering wheel. In addition, an AVT Mako G-234B grayscale video camera (640 

x 480 pixel, 30 fps, Figure 1H) was installed next to the steering wheel at the right 

side from the driver’s perspective. 

Participants. The total sample of 81 participants consisted of 49 males and 32 
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females; 40 participants took part in in Study 1 and 41 in Study 2. Age ranged from 

24 to 84 years, consisting of two distinct age groups; an older group over 60 years 

(M = 70 years, SD = 5.6, range = 61 to 84 years, N = 41) and a younger group under 

40 years (M = 29 years, SD = 4.2, range = 24 to 39 years, N = 40). The participants 

were required to hold a valid driver’s license and were compensated with 20 Euro for 

participation. Both studies were carried out in line with the regulations and consent 

templates of the TU Chemnitz ethics commission. The participants were not informed 

about the upcoming approach situations, but just to press the lever of the handset 

control according to the extent of perceived discomfort. 

 

Figure 1. Driving simulator (A), handset control for reporting discomfort (B), video camera 

perspectives Study 1 (C-D), video camera perspectives Study 2 (E-H). 

Discomfort Sequence Extraction. Each time period of pressing the handset control 

(independent of magnitude) was marked as discomfort interval for each participant 

and each of the three approach situations. A theoretical maximum 243 intervals could 

be present, having 3 approaches and 81 participants. However, in 51 approach 

situations participants did not press the handset control at all. Thus, 192 discomfort 

intervals could be marked (94 in Study 1 and 98 in Study 2) with a mean duration of 

7.72 s (SD = 5.45). A 10 s time interval was added before and after each discomfort 

interval to obtain a discomfort sequence (consisting of 10 s + discomfort interval + 

10 s). As all discomfort intervals varied in duration, a common percent time axis was 

created from 0% to 300% to show all changes of each AU in one common scale 

(Figure 2). Each discomfort interval was split into percent slices, calculating the mean 

AU-value over the time interval of the respective percent slice. Further details on this 

method can be found in (Beggiato et al., 2019; Borowsky et al., 2020; Beggiato et al., 

2018). 

Face tracking software and preprocessing of raw AU data. The latest available 

version of the Visage facial feature detection and face analysis SDK (Version 8.7 for 

Windows, visagetechnologies.com) was used to extract AU values of all video 

recordings. A total of 23 AUs were tracked, each resulting in an arbitrary decimal 

number for every video frame. Additionally, the software is able to report a tracking 
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quality value for each video frame and only quality values greater than 30% entered 

the analyses to avoid distortions. A moving average over ± 2 s was calculated for each 

AU raw score to correct for high frequency signal fluctuations. As the resulting 

smoothed AU values were still arbitrary decimal numbers, z-transformation was 

applied to all AU values of each video camera and each discomfort sequence. This 

procedure expresses raw values as distance to the mean in units of standard 

deviations, with a standard deviation of one and a total mean of zero (Gratton et al., 

2017). As these z-values represent relative changes of each AU within the discomfort 

sequence using a unified scale of measurement, data from all six video cameras could 

be combined. Completely missing AU values in discomfort sequences due to lost 

tracking in specific video camera streams were excluded from calculations. Thus, 428 

sequences with valid AU values entered the analyses (theoretical maximum = 580 

sequences resulting from 2 video cameras x 94 sequences in Study 1 and 4 video 

cameras x 98 sequences in Study 2). The z-transformed values were averaged over 

the 428 sequences for each percent slice (bold blue line in Figure 2) and the 95% 

confidence interval was calculated pointwise (plotted as a light red area around the 

means). If the confidence band does not overlap between two points in time, these 

two means differ in a statistically significant manner. To identify situation-related AU 

changes, all resulting plots of the 23 AUs were checked for significant rises or falls 

around the discomfort interval with subsequent recovery, i.e. n-shaped or u-shaped 

trends. Relevant AUs showing these effect trends are reported in Figure 2. 

RESULTS 

Figure 2 shows the average z-transformed values of all 10 AUs with situation-specific 

changes, i.e. n-shaped or u-shaped profiles. The values were averaged over all 428 

discomfort sequences of all video cameras. The figure includes the 8 AUs that were 

identified with the older Visage software version 8.4 and just one video camera 

(Beggiato et al., 2020) as well as two additional parameters (face scale Figure 2A and 

AU15 lip corner depressor Figure 2G). The face scale value (Figure 2A) indicates the 

size of the detected face and the z-transformed values showed a constant decrease 

until the end of the discomfort interval with subsequent sharp rise. These findings are 

in line with the pushback-movement of the body in this situation, which was found 

using maker-based motion tracking (Beggiato et al., 2018). Consistent with previous 

findings using eye tracking (Beggiato et al., 2018), a reduction in eye closure during 

the discomfort interval could be observed for the right and left eye with a subsequent 

increase after the discomfort interval (AU43, Figure 2C+D). Participants kept their 

eyes open and reduced eye blinks during the truck approach situation. An increase 

right after the discomfort interval could be found for the inner brow raiser (AU1), 

both for the left (Figure 2E) and right face side (Figure 2F). Combined with the 

increasing trend in upper lid raiser (AU5, Figure 2B), these eye-related AU-trends 

point towards a reaction of surprise and visual attention in this scenario. Changes in 

the mouth region showed a situation-specific increase in pressing the lips in general 

(AU24, Figure 2H) as well as pressing the lips corner (AU15, Figure 2G). In addition, 
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lips were stretched during the discomfort situation (AU20), both for the left 

(Figure 2I) and for the right face side (Figure 2J). The combination of pressing and 

stretching the lips during the close approach situation points towards a reaction that 

could be interpreted as tension. 

 

Figure 2. Average z-scores of AUs before, during and after discomfort intervals with 

situation-specific effects as n- or u-shaped trends (bold blue line = mean z-score over all 428 

sequences, light red area = 95% pointwise confidence interval). 

DISCUSSION AND CONCLUSIONS 

The present study focused on exploring the potential of facial expression analysis to 

provide information about current users’ discomfort with automated vehicle 

operations. Based on the idea of a driver-vehicle team, this information could 

subsequently be used to adapt automated driving style features and reduce 

unnecessary and potentially safety-critical take-over situations. Thus, AU changes of 

81 participants from two driving simulator studies were analyzing during a 

standardized automated close approach situation to a slower truck driving ahead. 

Video recordings from six video cameras (two in Study 1 and four in Study 2) were 

processed using the Visage facial features and analysis software v8.7. Overall, the 

combination of two studies, multiple video cameras and the newer analysis 
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software 8.7 showed similar, but also some new results in comparison to just one 

video camera and the older software version 8.4 (Beggiato et al., 2020). A new result 

is the situation-specific decrease in the face scale value. This pushback-movement of 

the upper body in this scenario was already found using marker-based motion 

tracking (Beggiato et al., 2018). Thus, the updated face tracking software could be 

used as alternative unobtrusive sensor system for detecting this specific movement. 

In line with previous result based on eye tracking (Beggiato et al., 2018), a tendency 

for keeping both eyes open (AU43) could be observed during the approach. Eye 

blinks were reduced and “postponed” until the situation passed. The raise of upper 

lids (AU5) and inner brows (AU1) are considered essential components of surprise 

(Ekman et al., 2002), even though the rise of inner brows was just visible immediately 

after the situation passed. The situation-related changes in the lips region comprise 

stretching (AU20) and pressing the lips (AU24) as well as pressing the lips corner 

(AU15). Very similar patterns in the mouth region could be identified for frustrated 

driver (Ihme et al., 2018) and this combination of lip movements could be interpreted 

as sign for tension. Overall, the AU changes during the discomfort interval point at a 

reaction of visual attention, surprise and tension. Even though these general AU 

effects could be found using z-transformation and signal averaging techniques, the 

rather broad confidence interval bands indicate that there is still variability. One 

source of variability could be individual differences in facial expressivity, i.e. 

different or even opposite individual trends in the AU reactions. A detailed analysis 

using the former Visage software version 8.4 separating two groups of high and low 

situation-specific effects can be found in (Borowsky et al., 2020). A second source of 

variability could be time-related issues, i.e. the effect is the same but anticipated or 

delayed with respect to other samples. These latency jitter effects result in “smearing” 

problems and are a known issue in signal averaging techniques for physiological data 

(Gratton et al., 2017). 

In conclusion, video-based automated facial expressions analysis using data 

averaging techniques showed specific changes during this uncomfortable close 

approach situation in automated driving mode. Thus, face tracking as unobtrusive 

sensor technology shows general potential for contributing valuable information 

about the user’s comfort/discomfort with current automated vehicles operations. Even 

though the presented results show potentially relevant changes in AUs including 

indications about direction, magnitude and timing of changes, discomfort detection 

at individual level still remains a challenging task. The findings obtained by z-

transformation and averaging over video cameras, participants and situations are not 

necessarily entirely transferable to each individual due to e.g. individual differences 

and latency of effects. In addition, the close approach situation is just one of several 

potentially uncomfortable scenarios, whereby distance regulation is considered a 

crucial factor for perceived comfort (Beggiato et al., 2019). Thus, the transferability 

of the presented approach should be validated in other situations, too. In addition, 

machine learning algorithms could potentially tackle some of these problems, 

however, significantly higher amounts of data at individual level would be required 

to develop and train such algorithms. 
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