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ABSTRACT 

Fault diagnosis of bearings is essential in reducing failures and improving functionality and 

reliability of rotating machines. As vibration signals are non-linear and non-stationary, 

extracting features for dimension reduction and efficient fault detection is challenging. This 

study aims at evaluating performance of decision tree-based machine learning models in 

detection and classification of bearing fault data. A machine learning approach combining 

the tree-based classifiers with derived statistical features is proposed for localized fault 

classification. Statistical features are extracted from normal and faulty vibration signals 

though time domain analysis to develop tree-based models of AdaBoost (AD), classification 

and regression trees (CART), LogitBoost trees (LBT), and Random Forest trees (RF). The 
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results confirm that machine learning classifiers have satisfactory performance and strong 

generalization ability in fault detection, and provide practical models for classify running 

state of the bearing.  

Keywords: Bearing Fault, Decision Trees, Time Domain Statistical Features, Machine 

Learning Classifiers 

INTRODUCTION 

Induction motors are one of the most significant parts of manufacturing systems operation 

and are prone to failure due to various electrical and mechanical stress and long operation 

hours (Toma et al., 2020). Fault diagnosis in induction motors is important for condition 

monitoring, enhancing reliability and availability of motors, and avoiding major loss in 

production and downtime (Tahir et al., 2017).  

Bearing is one of the most vulnerable parts in a motor and drive systems, and typically 

consists of four components of the inner raceway, outer raceway, ball, and cage. Faults in 

any of these components creates changes in vibration signals, and therefore, monitoring and 

analyzing vibrational signals is helpful in understanding bearing faults based on its location 

(Chen et al., 2017). In other words, comparing faulty signals with normal conditions allows 

for fault detection (Sugumaran & Ramachandran, 2011). Bearing fault is the most 

commonly-occurred type of faults, responsible for 30-40% of all the machine failures (Chen 

et al., 2017; Jallepalli & Kakhki, 2021).Therefore, efficient modeling methods for analyzing 

and detecting bearing faults is critical in improving the functionality of industrial and 

manufacturing systems (Milo et al., 2014). 

Data-driven modeling such as machine learning (ML) techniques utilize past data to 

generate meaningful predictive patterns in both classification and regression problems, with 

categorical and numerical target variables, respectively (Badarinath et al., 2021). Among 

various supervised ML models, decision tree techniques are powerful tools for classification 

and regression purposes. Adaptive boosting decision trees, known as AdaBoost (AD), is an 

iterative algorithm for constructing a classifier based on a linear combination for 

classification of a target variable. Moreover, AD is a simple enhancing process of weak 

classification algorithms, and this process can enhance the ability for data classification by 

reducing both bias and variance through ongoing training. The AD algorithm first begins 

with building different tree classifiers on the same training set, and then combining all those 

weak classifiers to construct a final strong classifier through adaptively adjustment of the 

weak classifier errors obtained by weak learners. The algorithm itself is achieved by 

changing the data distribution, which determines the weight of each sample based on the 

correct classification of each sample in each training set and the accuracy of the prior overall 

classification. The new data set with modified weights is sent to the lower classifier for 

training. Finally, the classifier obtained by each training is combined together to be the final 
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decision classifier (Wu et al., 2020). Classification and Regression Tree (CART) (Breiman 

et al., 2017) is another powerful classifier that can create meaningful outputs by partitioning 

the feature space and building binary decision trees recursively. CART classifier is popular 

in application due to being flexible, interpretable, and straightforward to comprehend 

(Murari et al., 2020). LogitBoost (LBT) is another ensemble-based decision tree that uses 

boosting for reducing bias and variance in the classification tasks by applying logistic 

regression principles on the AdaBoost generalized additive model (Tehrany et al., 2019). 

Random Forest (RF) algorithm is another tree-based ensemble classifier that reduces the 

generalization error through building many trees as the basis for classification (Fang et al., 

2020). The big number of trees use bagging method which adds randomness to the tree 

building process (Liakos et al., 2018). 

Developing data-driven ML models need large datasets that include data on both faulty 

and normal conditions (Ebrahimifakhar et al., 2020). One of the main benchmark datasets 

for bearing fault analysis is available through the Case Western Reserve University (CWRU) 

website database (Fault & Data, n.d.), which has been used as a benchmark set for developing 

various statistical, machine learning, and deep learning models with the purpose of detecting 

and classifying faults in bearings (Zhang et al., 2020). The main challenge for modeling 

CWRU data and consequently various results is that the original data do not have a manual 

for instruction on classification experiments, and therefore leaves researchers with the 

challenge of interpretation and selection of feature extraction methods for achieving higher 

accuracy rates and useful models (Rauber et al., 2020).  

This paper demonstrates a data-driven fault detection modeling approach based on 

statistical machine learning classifiers, specifically decision-tree based methods. This study 

contributes to the current literature on practicality of ML models in classification and 

detection of bearing faults by evaluating the performance of decision tree models including 

AD, CART, LBT, and RF.  

The rest of this paper is organized as follows. Section 2 explains the process for extracting 

statistical features from original data files, and developing ML classifiers for bearing fault 

detection. Section 3 includes details of the results, followed by a brief discussion of the study 

contribution and future research direction in Conclusion, presented in Section 4 of the paper.  

MODEL DEVELOPMENT AND FEATURE 

EXTRACTION 

Comparing faulty vibration signals with normal signals is a popular method to detect faults 

in bearings (Sugumaran & Ramachandran, 2011). However, due to the large data dimension 

from vibration signals at different locations of the bearings, feature extraction methods 

should be applied for reducing data dimensions and improving data-driven modeling 
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approach. Among various feature extraction methods, this paper uses statistical feature 

extracted from the vibration signals based on similar approaches in (Kankar et al., 2011; 

Sugumaran & Ramachandran, 2011; Tahir et al., 2017). 

One of the main benchmark datasets available for bearing fault analysis is available 

through the Case Western Reserve University (CWRU) website database, which  contains 

data files on both faulty and normal conditions of bearing, and includes the details of the data 

(Fault & Data, n.d.). Considering the 48kHz bearing faults in the original data, there are at 

least 480,000 sample points, or the length of time series data. To train the ML classifiers, the 

data is segmented to reduce the data dimensionality. Furthermore, to include data points 

representative of the entire bearing time series data, samples at certain intervals such as a 

fixed gap in samples, rather than choosing first few consecutive data points, are drawn. Also, 

the segmentation process can reduce the overlap between two data sample intervals. In this 

data, the sample rate is 48 kHz, approximately 230 sample points per revolution for each 

type of bearing fault with length of 2048, and number of class labels of 10 for normal and 

faulty bearings, shown in Error! Reference source not found.. Therefore, Considering the 

48KHz bearing faults at drive end, a final data set is prepared with dimension of (230*10, 

2048) for the 10 various labels. 

Table 1: Dataset obtained from CWRU bearing faults 

  

Bearing condition Fault size (inch) Created label 

Bearing fault (Ball) 

0.007 Ball_0.007 

0.014 Ball_0.014 

0.021 Ball_0.021 

Inner race fault 

(IR) 

0.007 IR_0.007 

0.014 IR_0.014 

0.021 IR_0.021 

Outer race fault 

(OR) 

0.007 OR_0.007 

0.014 OR_0.014 

0.021 OR_0.021 

Normal - Normal 

 

In the next step, for each vibration signal, from either type of faulty or normal bearing, 

statistical feature of minimum, maximum, mean, standard deviation, root mean square error, 

skewness, kurtosis, crest form, and form factor are calculated and extracted, for the 48 kHz 

data (Error! Reference source not found.). The features extracted are then used as input 

variables for developing decision tree ML models to classify and predict the fault location 

and status in the dataset. The data for modeling is partitioned in 70% for training and 30% 
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for testing. The model performance is judged based on the test data.  

Table 2: Statistical features extracted from the data 

Statistical feature Equation 

Mean 𝜇 =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1   

Standard Deviation 
𝜎 = √

∑ (𝑥𝑖−𝜇)
2𝑛

𝑖=1

𝑛−1
  

Root Mean Square  
𝑋𝑟𝑚𝑠 =

√∑ 𝑥𝑖
2𝑛

𝑖=1

𝑛

  

Skewness 𝑋𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1

𝑛

∑ (𝑥𝑖−𝜇)
3𝑛

𝑖=1

𝜎3
  

Kurtosis 𝑋𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑛

∑ (𝑥𝑖−𝜇)
4𝑛

𝑖=1

𝜎4
  

Crest Factor 𝐶𝑓 =
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛
  

     Form factor 𝐹𝑓 =
𝜇

𝑋𝑟𝑚𝑠
  

 

 To assess the performance of the ML classifiers, both overall model accuracy and class-

specific accuracy is important. The former shows the general ability of the ML classification 

power, and the latter shows the capability of the model in distinguishing among various class 

output labels, and reveals the model success in specifically detecting and classifying a label. 

Multi-label confusion matrix is used for determining this task.  

Using the confusion matrix for any classifier, the terms of specificity, sensitivity and 

precision can be obtained to characterize the performance of a classifier per class. Recall 

represents the proportion of correctly classified labels, while precision evaluates class 

agreement of the data labels with the positive labels defined by the classifier. Another metric 

that is gained from the multi-level confusion matrix is F-score, and is a harmonic mean of 

the precision and sensitivity. Furthermore, in cases of working with class imbalance issue, 

another effective evaluation criterion for performance of ML classification models is using 

the Matthews correlation coefficient (MCC) (Chicco & Jurman, 2020) as a more reliable 

evaluation metric compare to overall accuracy rate (Chicco et al., 2021). Another criterion 

for assessing class-specific accuracy is identifying the area under curve (AUC) from the 

receiver operating characteristic curve (ROC). The ROC curve depicts the value of 

specificity vs sensitivity, and the AUC is between 0 and 1. The importance of AUC values 

is in the fact that they provide information about the usefulness and predictive power of the 

model in specifically classifying each label, in particular when more than two classes are 

present as outputs in the dataset. The higher the AUC values, the more powerful a classifier 

is in differentiating between class labels.  
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RESULTS 

We applied feature extraction of vibration signals though time domain analysis that were 

used for training decision tree-based machine learning classifiers. The time domain statistical 

parameters extracted from vibration signals include minimum, maximum, mean, standard 

deviation, root mean square, skewness, kurtosis, crest factor and from factor. This is an 

effective method for significantly reduce the dimension of data before training any machine 

learning models.  

In the next step, AD, CART, LBT, and RF decision trees are used for detection and 

classification of bearing fault conditions. Considering 48KHz drive end bearing data, the 

accuracy comparison based on average values for overall accuracy rate, overall error rate, 

precision, recall, F-measure, and ROC area for all the classifiers is presented in Error! 

Reference source not found.. When applied to the CWRU bearing fault data set, all models 

showed high accuracy in classifying the localized bearing faults at multilevel in either ball, 

inner race, or outer race of a 48kHz drive end bearing with different diameter measurements 

at 0.007, 0.014, 0.021 inches. All tree classifiers have an average overall accuracy over 95%.  

Table 3: ML model performance per classifier (on average) for 48K data on test set 

ML Classifier Precision Recall F-Measure MCC ROC Area 

AD 0.957 0.957 0.957 0.952 0.994 

CART 0.961 0.961 0.961 0.957 0.997 

LBT 0.966 0.965 0.965 0.962 0.997 

RF 0.963 0.962 0.962 0.959 0.998 

 

All models have a high F-measure between 0.957 to 0.965 which belongs to LBT and is 

marginally higher than the others. The same is observed looking at the average ROC area, 

with RF model demonstrating the highest value of 0.998. The results confirm that the 

supervised machine learning classifiers have satisfactory performance and strong 

generalization ability, and therefore, can be used to classify the running state of the bearing. 

The MCC values are close to 1 (between 0.952-0.962) for all classifiers that show the high 

quality of the models in distinguishing among the various classes of the localized faults.  
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CONCLUSION 

In this study, a machine learning approach combining the tree-based classifiers with derived 

statistical features is proposed for localized bearing fault classification. The effectiveness of 

the proposed approach is validated using the publicly available Case Western Reserve 

University (CWRU) dataset. The main challenge for modeling CWRU data and consequently 

various results is that the original data do not have a manual for instruction on classification 

experiments, and therefore leaves researchers with the challenge of interpretation and 

selection of feature extraction methods for achieving higher accuracy rates and useful 

models. The results of this study are comparable with other research in which CWRU data 

was analyzed with similar approach of applying time domain statistical features to decision 

tree models with high accuracy rates (Nishat Toma & Kim, 2020). The future direction of 

this study is to compare the performance of decision tree models on other available bearing 

fault datasets, and developing deep learning models to assess how deep learning and machine 

learning performance are compared for bearing fault classification and detection.  
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