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ABSTRACT 

Haptic gloves with force feedback represent new and immersive devices for Virtual 

Reality (VR). They enable interaction with virtual objects and have a positive impact 

on virtual engineering processes. The position of the hand and its specific finger 

positions, such as grip types, are tracked in virtual space during assembly processes. 

Implementing rule-based recognition of these grip types is complex and error prone 

due to hard- and software limitations. Machine Learning (ML) can support engineers 

during the use and implementation of these applications by classifying user input as 

specific grip types. Two ML algorithms, one Neural Network (NN) and one Support 

Vector Machine (SVM), that detect nine grip types at runtime by only using the joint 

angles of the glove’s exoskeleton as features, were developed and compared with a 

rule-based algorithm. Our research shows, that the ML algorithm reach a very high 

accuracy with only reading one feature compared to the rule-based algorithm. 
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INTRODUCTION 

During product development processes it is necessary to validate early on if and how 

it is possible to assemble the product according to plan. Therefore, simulation 

software is available, which provides functions that enable collision free path 

planning of components. In manual assembly processes it is furthermore necessary to 

add the user as a factor to the simulation, which can be done by using digital human 

models (DHM). These are digital representations of humans to assess ergonomic 

criteria like visibility, physical load or the path workers walk during their assembly 

task. Another possibility to assess the mountability with digital models is to use 

Virtual Reality (VR). In VR it is possible to conduct the task manually and assess 

whether or not a collision free path exists. This also enables companies to conduct 

assembly simulations with workers who have experience from their day to day tasks 

from the factories. Furthermore, it is possible to quickly assess different variants of 

assembly processes. One main impediment of using the results of the simulation of 

one individual worker is, that the values are often only valid for the person who 

performed the task, as people have different anthropometry and experiences. To 

eliminate this impediment, it is possible to transfer the interactions the user performed 

in VR to a DHM. On the one hand this increases the realm of the simulation, on the 

other hand it is possible to simulate manikin families within DHM software, where 

DHM are represented with relevant anthropometric differences (e.g. small, middle, 

tall body sizes). To be able to use the simulation it is necessary to define the 

simulation constraints. The constraints are grip type, grip position as well as how 

open or closed the hands are and the path of the object. Whereas it is easy to read the 

hand information in VR, it is difficult to detect the right grip type a user performed in 

VR.  

Haptic feedback can enrich the VR experience by enabling tactile feedback to the user 

and therefore imitate surfaces of assembly objects to the engineer. For an ongoing 

research project, we are evaluating haptic gloves with force feedback as an input 

method for digital human models. Therefore, we investigate different machine 

learning (ML) algorithms as well as a rule-based algorithm to identify nine different 

grip types while grasping in VR. The grip types as seen in Figure 1 are used for the 

DHM in the software IPS IMMA (Hanson et al. 2011): the Chuck Grip (CG), 

Cylindrical Power Grip (CPG), Lateral Pinch (LP), Pistol Grip (PG), Diagonal Power 

Grip (DPG), Parallel Extension (PE), Prismatic Pinch (PP), Spherical Grip (SP) and 

Tip Pinch (TP). We conducted a user study to gain training data for the algorithms 

and evaluated the results of the algorithms with 12 participants. 
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Figure 1. Image representation of all evaluated grip types that have been classified with the 

algorithms 

GRIP TYPE RECOGNITION IN VR 

Multiple rule-based algorithms to detect grip types have emerged in the past, which 

make use of more than one feature in order to reach a high accuracy of grip type 

detection. (Zou et al. 2019) use the position of the fingertips and the direction of the 

palm, whereas (Aleotti and Caselli May 15-19, 2006) reach an accuracy rate of 94% 

for experienced users while taking three features into account: the position of the 

finger tips, the rate of how the finger touches an object and an additional movement 

parameter for the virtual fingers. Some input devices might not detect additional 

parameters which are needed for those algorithms, like the rate of touch or the hands 

velocity, and need to be implemented by the engineer according to the use case and 

in regards to the hardware limitation. Using ML for classification might help to 

predict grip types with devices that only support the joint angles of the fingers and 

help speed up implementation processes across multiple levels of user experience. 

Figure 2 shows an image with a user wearing the haptic glove SenseGlove DK1 that 

enables tactile feedback in VR. Whenever the user touches surfaces in virtual space, 

the exoskeleton of the glove blocks its articulation and therefore stops the fingertips 

from moving. This creates the impression of touch for the user in VR. 
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Figure 2: SenseGlove DK1 haptic gloves worn by user with attached HTC Vive Tracker (left) 

and hand representation in VR (right) 

ML has already shown potential in engineering processes, for example as diagnostic 

tool for engine performance analysis (Giorgi et al. 2018), for complex pattern 

recognition from sensor data (Wuest et al. 2016) and for predictive maintenance to 

prevent system failures (Susto et al. 2015). ML excels in systems with a lot of data 

and is especially useful when the available data and its relations to each other are very 

complex and not easily interpreted.  

Furthermore, many VR applications make use of ML for related fields like robotic, 

autonomous cars and advanced visualization (Reiners et al. 2021). Our goal was, to 

investigate if we can utilize ML for grip type classification with a limited number of 

features, which might not be feasible for a rule-based implementation. 

USER STUDY 

Of 20 people who participated in the user study, 8 contributed to generating the data 

for the classification algorithms and 12 people verified the efficiency of the 

algorithms within a study in VR. Both groups had to perform all nine grip types three 

times, which were visualized with images in VR as seen in Figure 3. For each of the 

nine grip types we provided an image representation and one golden object to grasp. 

The test participants were all between 20 and 25 years old. Two of the 20 participants 

already had some experience in using VR and the SenseGlove. 
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Figure 3: set-up for the user study in VR with grip type images and golden objects to grasp 

For each frame at a rate of 60 frames per second ten joint angles were recorded during 

the execution procedure. The values consist of two angles per finger which describe 

the angle of the exoskeleton. One is the extension/flexion in y-axis and the other 

consists of the z-axis which is the abduction/adduction. Table 1 shows the 

representation of one frame, with joint angle values for one finger and two tracked 

axis as shown in Figure 4 (SenseGlove). The full training dataset contained 13.425 

fields of data, which averages 1.492 samples per gesture. 

 
Figure 4: Axis of the hands as SenseGlove provides the data 

 
Table 1: Example of output for the joint angles of the thumb when performing a Chuck 

Grip. 
Finger Axis Joint Angle Normalized feature 

Thumb Y 45.32096 0.390261 

Thumb Z -46.34166 0.3868417 

 
We implemented one NN, one SVM and one rule-based algorithm. All three 

algorithm only use the joint angles of the exoskeleton, which are provided by the 

SenseGlove SDK. For the rule-based algorithm we performed all grip types multiple 

times, calculated averages for each grip type and added a range of about 20° in both 

directions as valid parameters. Figure 5 shows the execution of one grip Tip Pinch in 

VR. During the test phase of the validation group we recorded the predictions of the 

two ML algorithms and the results of the rule-based algorithm.  
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Figure 5: Execution of a Tip Pinch in VR with haptic gloves during a user study 

The classification rate for each algorithm was compared by their accuracy. 

Additionally, the F1-score was used as a metric to measure the performance of the 

ML algorithms. This metric factors in precision, which is the fraction of true positives 

compared to false positives and recall, which gives information about how many true 

positives are classified correctly rather than missed (Avola et al. 10/6/2019 - 

10/9/2019). 

RESULTS 

Table 2 to 3 show the confusion matrices for both ML algorithms. Both algorithms 

were able to classify most grip types very well, with multiple grip types reaching 

100% accuracy. There are three grip types that stand out with bad recognition rates 

across all algorithms. Pistol Grip, Parallel Extension and Prismatic Pinch have higher 

chance to be misclassified.  

Table 2: Confusion Matrix for NN in percent with performed gesture (at the top) and 

recognized gesture (on the left) for Chuck Grip (CG), Cylindrical Power Grip (CPG), 

Lateral Pinch (LP), Pistol Grip (PG), Diagonal Power Grip (DPG), Parallel Extension 

(PE), Prismatic Pinch (PP), Spherical Grip (SP) and Tip Pinch (TP). 

 CG CPG LP PG DPG PE PP SG TP 

CG 100 0 0 21 0 2 0 0 0 

CPG 0 98.59 0 0 0 0 0 0 0 

LP 0 0 88.38 0 0 0 5.58 0 0 

PG 0 0 0 56.58 0 6.25 5.45 0 0 

DPG 0 0 11.20 0 100 0 0 0 0 

PE 0 0 0 0 0 50.45 0 0 0 

PP 0 1.49 0 1 0 0 48.08 0 0 

SG 0 8.92 0 21.91 0 41.59 40.89 100 0 
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TP 0 0 0 0 0 0 0 0 100 

 
Table 3: Confusion Matrix for SVM in percent with performed gesture at the top and 

recognized gesture on the left for Chuck Grip (CG), Cylindrical Power Grip (CPG), 

Lateral Pinch (LP), Pistol Grip (PG), Diagonal Power Grip (DPG), Parallel 

Extension (PE), Prismatic Pinch (PP), Spherical Grip (SP) and Tip Pinch (TP). 

 CG CPG LP PG DPG PE PP SG TP 

CG 100 0 0 21.19 0 2.27 1.24 3.74 0 

CPG 0 86.49 0 2.16 0 5 6.32 0 0 

LP 0 3.65 91.91 5.66 0.85 0 0.12 0 0 

PG 0 0 0 43.42 3.72 1.25 9.67 8.64 0 

DPG 0 0 3.11 0 95.43 0 0 0 0 

PE 0 0 0 0 0 91.02 0 1 0 

PP 0 9.86 4.98 24.79 0 0.45 82.03 1.73 5 

SG 0 0 0 0 0 0 0.62 84.64 0 

TP 0 0 0 2.78 0 0 0 0 95 

 

Table 4 shows the F1 Score for both ML algorithms across all grip types. The mean 

value is at 0.82 for the NN and 0.85 for the SVM, whereas the standard deviation 

shows a low variability with 0.15 for both algorithms. 

Table 4: F1-Score for all users with Chuck Grip (CG), Cylindrical Power Grip 

(CPG), Lateral Pinch (LP), Pistol Grip (PG), Diagonal Power Grip (DPG), Parallel 

Extension (PE), Prismatic Pinch (PP), Spherical Grip (SP) and Tip Pinch (TP), 

Mean Value (MV) and Standard Deviation (SD). 

Grip 

type 
CG CPG LP PG DPG PE PP SG TP MV SD 

NN 0.91 0.95 0.92 0.68 0.94 0.67 0.64 0.68 1.00 0.82 0.15 

SVM 0.89 0.86 0.91 0.52 0.96 0.95 0.69 0.91 0.96 0.85 0.15 

 
Table 5 shows a comparison of the classification rates for all three algorithms. The 

rule-based algorithm reaches a low mean value of 45.27 % across all grip types, with 

good results above 79% for the PG and the CPG and detection rates of below 50% 

for CG, LP, PE, PP and TP. The NN reaches a high mean value of 81.45% with a 

standard deviation of 22.87% whereas the SVM reaches 85.53% mean value with 

16.78% standard deviation.  
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Table 5: Comparison of all algorithms in percent with probabilities that a performed grip type is 

classified correctly with Chuck Grip (CG), Cylindrical Power Grip (CPG), Lateral Pinch (LP), 

Pistol Grip (PG), Diagonal Power Grip (DPG), Parallel Extension (PE), Prismatic Pinch (PP), 

Spherical Grip (SP) and Tip Pinch (TP), Mean Value (MV) and Standard Deviation (SD). 

Grip 

type 
CG CPG LP PG DPG PE PP SG TP MV SD 

Rule-

based 
9.72 83.78 45.23 79.42 68.09 30 32.47 58.73 0 45.27 29.71 

NN 100 90 88 57 100 50 48 100 100 81.45 22.87 

SVM 100 86.49 91.91 43.42 95.43 91.02 82.03 84.64 94.79 85.53 16.78 

DISCUSSION 

Overall the results are satisfying to the research team, as they show, that both ML 

algorithm reach high probabilities to correctly classify grip types with the provided 

features. Considering all the results one notices the poor values of the Pistol Grips 

across all algorithms. This leads us to believe that the user group responsible for 

creating the training data had difficulties to execute the grip type. The accuracy of 

this grip could be improved by recording the training data once more with more 

specific instructions given to the participants and by providing a pistol grip as 

interaction object. The second noticeable bad recognition rates can be seen for 

Parallel Extension and Prismatic Pinch which is most apparent for the NN. Both grip 

types are very similar to the Spherical Grip and mainly differ in the pronation of the 

thumb, which was not considered for these algorithms. In addition to this, the training 

of the Spherical Grip required more training data, because it covers a wider range of 

motion than the other grip types. This might have led to overfitting for this specific 

grip type, mainly affecting the NN. To compensate this, the weights and biases of the 

affected classes could be adjusted so the Spherical Grip doesn’t get favored anymore 

and the data of the Spherical Grip could be thinned out to better fit in with the rest of 

the data. Using the rule-based algorithm the Tip Pinch has not once been correctly 

recognized, which leads us to think that the range of valid angles for this grip type 

has been set up too narrow. This error has not been noticed during early validation 

phases of the implementation and need to be investigated further.  

We furthermore noticed, that the more experienced users had far better results and 

reached rates of 100% for many grip types. This group was unfortunately too small 

in order for us to properly separate and analyze the data for our user study. One 

possibility would be to repeat the study with a group of more experienced users in 

order to compare the results.  
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CONCLUSION 

Two ML models and one rule-based algorithm have been implemented and 

compared, that detect nine grip types at runtime by only using two joint angles of the 

exoskeleton as features. Our research shows, that the ML algorithms reach a very 

high classification probability of more than 80% for most grip types. 

These probabilities show very good results with limited input data and short assess 

and implementation time. Once the algorithms are enhanced, we could apply the same 

approach to different haptic gloves in order to compare its efficiency for different 

hardware and features. Furthermore, the test group of experienced VR users has been 

too small so the study should be repeated with a bigger group of experienced VR 

users in order to properly assess differences in classification rates. 
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