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ABSTRACT  

The Bézier curve is a special curve developed in the 1960s, which is not to be generated 

"directly" with classical mathematics, therefore it is also called "free-form curve". The Bézier 

mathematics makes it possible to generate a lot of different curves with simple 

parameterization. Under dynamic aspects of the CNC process, the Bézier curve developed for 

static application profiles leads to Shape-dependent fluctuations of the cutting speed in orders 

of magnitude from 1:3 to 1:10 - and above. In Analysis, the problem of leveling different 

support point distances - which is causal here -, is studied under the term Parameterization by 

Arc length. For Bézier curves, however, a generally valid solution has not yet been published 

due to mathematical preconditions. Based on this background, a generally valid approximation 

algorithm for the Reparameterization of Bézier curves according to Arc length and their Dynamic use 

on CNC machines, was developed. 

 

Keywords: Reparameterization · leveling dynamic fluctuations · CAD CAM · CNC  · Bézier 

· de Casteljau · step size · support point distance. 
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FOREWORD AND STATE OF THE ART 

Due to the limited space of this paper, only a summary excerpt from more extensive research 

can be given here, which is limited to Cubic Bézier curves. Knowledge of the structure and 

mathematics of Bézier curves must be assumed. Details are to be found at: Fetouaki and 

Skopin (2009), Oberle (2013), Babovsky and Neundorf (2011).  

Both terms "step size"- which is more common for Bézier - and "support point distance" in 

focus of CNC path are used here, however have almost the same meaning. 

The "normal" Bézier curve of any class (exponent) is a curve parameterized in the mostly 

uniform grid "t". 

 From a static point of view, a Bézier curve is a locus curve with special possibilities for 

forming shapes. This was the intention of its development. If shaping is the goal of the 

Bézier process - as in the case of a car body, for example - the locus curve calculated for 

t = 0 to t = 1 is the desired result; - "t" is to be evaluated as a dimensionless parameter.   

 Dynamically, the Bézier curve has some peculiarities: If "t" is considered as time, then - 

even for symmetrical Bézier curves and the same time interval - different step sizes of 

the locus curve will result due to inhomogeneous parameterization.  

Dynamic Bézier curves 

Bézier curves are a standard feature of CAD programs. In CAM (Computer Aided 

Manufacturing) their use is much less pronounced, as an Internet market research shows. The 

background is probably that Cartesian xy-support points generated by means of "normal" 

Bézier curves are mostly unsuitable for further processing on CNC machine tools. 

 CNC programs calculate the feed rate of the positioning axes from the distance of the 

path support points.  

 The Bézier locus curve has unequal construction point widths due to inhomogeneous 

parameterization, which influences the operating speed of CNC machines.  

 

In Analysis, the problem of leveling different support point distances is studied under the term 

Parameterization by Arc length. The preconditions and limits of this are shown in the lecture 

scripts of FMI and Roth (2013/14). The classical curve discussion requires:  

 that the derivation of the function must not become "0" (zero), i.e. a strictly monotonously 

increasing or decreasing function. Bernstein polynomials of the order no. B1 and B2  show 

in each case a high point, i.e. 1st derivative (velocity) = 0.  

 Prerequisite of the parametrizability of curves is furthermore that they must be "smooth", 

i.e. continuously differentiable as often as desired. This is not the case with polynomials! 

The here presented  

 New Findings on Reparameterization of Bézier-Curves  

Applied Human Factors and Ergonomics International 

Intelligent Human Systems Integration (IHSI 2022): Integrating People and Intelligent Systems 
https://openaccess.cms-conferences.org/#/publications/book/978-1-7923-8988-7



 

 

levels the spacing of the path support points and dampens dynamic velocity variation of the 

original (by "t=const" parameterized) Bézier functions to a range of  10-2  to   10-3  of their 

original value. 

CUBIC BÉZIER CURVES  

The non-parameterized "normal" Bézier curve runs through path sections in the time interval 

t = 0 to t = 1 in equal time steps, but with different path lengths (Fig. 2 01a),  

- which does not affect static applications. 

Reparameterization, Numerical Approximation Algorithm 

For the Parameter transformation by arc length (Fig. 2 01b) it is useful to define the 

transferred partial step times with τ = 0 to τ =1. 

 From the non-parameterized Bézier locus curve, the geometric distances of the xy 

construction points are first determined at step size  t (const)  = 1/n (per Pythagoras).  

 For each time step  (t (const)) this results in a individual different length of each step  

- whose sum corresponds on the one hand approximately to the total length of the 

Bézier curve,  

- on the other hand indicates the "individually normal" distance between supporting 

points at t = const. 
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 For normalization, each individual step size is divided by the curve segment's total length 
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 do not add up precisely to 1 - depending on the resolution 

"n" and the curve's shape (Pythagoras rounding error). 
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 The transferred single time step sizes are therefore to be normalized by the factor resulting 

from their sum. 

 

Cascading by feedback-loop  

If in a feedback loop the results from [2_04] are used again as starting value instead of t (const) 

in [2_04], then the described algorithm levels fluctuations (curve-dependent) to an order of 

magnitude of the 1- to 2-digit per mille range. 

Based on the transformed time step sizes [2_04] respectively [2_05], by repeated feedback 

new Bézier xy construction points become computable, leading to an approximate 

Reparameterization by arc length (cf. dots spacing Fig. 2_01a  vs. 2_01b). 

Reparameterization, Bézier Spline  

A cascading of several Bézier curve segments to a spline with smooth connection points 

requires a gapless connection (P0 of the following curve = P3 of the preceding one) as well as 

tangent equality of both curves in the transition point. 

 If the absolute arc length of the segments is equal, acceleration-free transitions result, 

since each segment is parameterized to equal support point widths in the interval t=0 to 

t=1. The Bézier circle of 120° segments is a good example of this.  

 If the segments are of different arc lengths, the resolution "n" must be chosen proportional 

to the arc lengths, i.e. interval division for t=0 to t=1, must be adapted. 

  
Fig. 2_01a  Orig. inhomog. Bézier step size  2_01b  Steps levelled by reparameterization  

 - - Curves 1 (left)          asymmetric with inflection point 

  - Curves 2 (bottom)    Circle segment 

  - Curves 3 (right)        asymmetric without inflection point 

 

The thick dots each mark a step size "double spacing" in the t-range 0,0 / 0,5 / 1,0  

Curve 1:     Step's fluctuation 1:   2.271             levelled fluctuation 1: 1.013  

Curve 2:     Step's fluctuation 1:   1.135             levelled fluctuation 1: 1.00045 
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Curve 3:     Step's fluctuation 1: 11.108             levelled fluctuation 1: 1.055 

Derivative & Velocity  

The considerations of derivative and velocity have a general character. The 1st derivative of 

a locus is commonly considered to be velocity. This is the case, if the locus curve was logged 

as a path-time diagram; however, it is not generally valid: The 1st derivative brings e.g. for 

the low point of a parabola the gradient value "0" (zero), which does not have to correspond 

to the path speed of a vehicle. If this parabola would be passed on a roller coaster, the speed 

would be highest in the low point! 

 

 Basically applies:  

 

drive. itsor   vehicleon thebut  -

 ,derivation itsor  curvepath   theof shape on thedependent not  is -

 , traversedis curvepath  aat which  speed The

 

 

A parameter transformation does not affect the graph of the locus curve or its derivative; it 

shifts the xy construction points of the graph "on the graph". The inverse makes clear:  

If equal support point distances are traversed at equal time intervals, the velocity between the 

support points is the same. 

Bézier circle  

From a CNC point of view, the circle approximation, in particular the reparameterization 

according to arc length is rather academic in nature.  

The problem of segment cascading is nevertheless explained from a dynamic point of view 

using the example of the Bézier circle, since this can be reproduced without any problems.  

The graph of a circle can be approximated very well with cubic Bézier curves.  

For a circle cascaded from 3 segments of 120° each, the peripheral standard deviation of the 

graph compared to a circle based on sin/cos is in the order of 10-3. If the supporting points are 

displayed separately according to y = f1(t)… as well as x = f1(t)… each as an independent 

path-time diagram, the cascading of composite Bézier curves shows, as expected, no kinks or 

jumps, the segments themselves are still continuously differentiable.  

Bézier circle, 1st derivation  

The 1st derivation (speed) reveals - although the tangent condition is fulfilled - a similar 

problem for a Bézier circle as for a Bézier straight line: While the "sin/cos circle" is traversed 

on a CNC machine with the same angular and thus cutting speed, in a Bézier circle not only 

different speeds occur within the individual segments; the segment transitions are - as a result 

- by no means jerk-free: 
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The speed increases from the center point to the end point (acceleration positive), but 

decreases again after the transition to the new segment (acceleration negative). The transition 

is abrupt! Since the acceleration reversal takes place in the connection point without temporal 

transition, the acceleration goes towards infinity! 

The derivative of a Bézier curve can optionally be represented for x and y separately in 2 

independent graphs x = f(t) as well as y = f(t) or from the xy pair also as a Bézier curve. 

"Derivations of a Bézier curve are themselves Bézier curves" (Lichtmannegger, 2010). 

Bézier circle, 1st derivation  

    
Fig. 2_02a  xy-axes velocity versus time          2_02b  Bézier (vector length) 

       images identical:  -- >   t  =  const.  

       as well as    -- >   t <> const. 

 

With the Bézier circle (Fig. 2_02b) the 1st derivative reminds of the "disk of the rotary piston 

Wankel engine", whose center lies in the zero point of the coordinate system. If the distance 

between the zero point of the coordinate system and the bend point of the curve is normalized 

to the unit vector, then for every other vector position its magnitude corresponds to the relative 

angular velocity. 

Bézier circle, vector length versus time  

As an "integral versus the velocity amount", the length of each section is calculated from the 

velocity multiplied by its time base. A time base that is the same throughout thus results in 

time-proportional line segments.    If we normalize the initial and final velocity in the base 

points to "1" and 100%, respectively, the minimum velocity in the center of the circle segment 

is about 88%, (cf. Fig. 2_03a). In order to minimize these speed differences, it is therefore 

obvious to adjust the step size of the t-values, cf. reparameterization, 2.1. 

 

Bézier Circle, Reparameterization  

An intermediate step of the reparameterization is shown in the following figure:  
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Fig. 2_03a  Speed versus time  2_03b  Step size versus time 

    -- > t = parameterization to constant velocity   

 

 The graph Fig. 2_03a shows the example of a circle of 3 segments each 120° with n = 

20 Bézier steps corresponding to Fig 2_02b in a different diagram format:   

    Regardless of using reparameterized time steps (τ) - or unparameterized time step  t 

(const) - the same graph results for the velocity course of the circle (min = approx. 88% 

max). 

 Fig. 2_03b shows the leveling of the step size to min = approx. 99.95% max.  

- Cascading (cf. 2.1 / 2.1.1) improves the fluctuation (min/max) to 0.05%! 

 

It is surprising at first, that the algorithm transforms the distance of the grid points (Fig. 

2_03b), but has no influence on the fluctuation width of the velocity (Fig. 2_03a), although 

the graphs are connected via their time steps! 

 

Here two explanations.  

The Bézier locus curve is determined from the Bernstein polynomials, the construction points 

for any "t" lie on the graph determined from "t". This is also true for the t-values transformed 

for leveling the orbital velocity (time steps "τ"). "The derivation of a Bézier curve is itself a 

Bézier curve" (Lichtmannegger, 2010). 

 which is determined from derived Bernstein polynomials, therefore changed time steps 

still produce the same velocity curve. 

 Fig. 2_03a shows the velocity evaluation of the 1st derivative (Differential quotient). As 

expected, the Difference quotient, which evaluates the secant slope (construction point 

width divided by time step), produces a graph with the same image. In the sense of the 

result comparability of both graphs/procedures it is purposeful to assign a xy-point 

position from interpolation of neighboring tangent points to the secant slope. Fig. 2_03a 

shows for both methods an almost equal graph.  

    The calculation approach "Difference quotient"  

makes clear, that a corrected distance of the support point is based on a proportional 

change of the time base "t" or "τ" - the velocity therefore does not change significantly. 
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The approximation algorithm according to 2.1 parameterizes each Bézier circle segment 

according to or proportional to the arc length. For this purpose, the (reparameterized) 

construction points calculated with transferred time step size "τ" (having now the same 

support point width) are assigned to the original, equal time intervals (t = const.). 

 

Bézier circle, speed levelled by reparameterization  

   
Fig. 2_05a  xy-axes velocity versus time          Fig. 2_05b  Bézier (vector length)  

 

 In the example of the cascaded Bézier circle, the 1st derivative shows (almost) uniform 

velocity for all 3 segments. The xy-coordinates reparameterized to the same step size lead 

to almost smooth transitions at the same time step "t" (Fig. 2_05a / 2_05b). 

 The 1st derivative of the unparameterized locus curve (Fig. 2_02b) showed a graph 

similar to the "disk of the rotary piston Wankel engine ". The reparameterization 

transforms this into an almost sin/cos like graph (Fig. 2_05).  

 

The algorithm published at 2.1 improves the fluctuation of the velocity (min/max) to 0.05%!  

SUMMARY  

Thanks to the ingenious mathematicians Pierre Étienne Bézier (Renault) and Paul de Casteljau 

(Citroën), curves and shapes became calculable in the 1960s, the "elegance" of which caused 

the greatest sensation. These curves were developed for static shaping, they are standard for 

CAD systems, but not directly applicable for dynamic processes. 

With the knowledge published above, it is now possible, with simple mathematics, to calculate 

very good approximations for a reparameterization of Bézier curves according to arc length 

and to reduce shape-dependent variations in cutting speed to a range of 10-2  to  10-3 of their 

original value; please compare Fig.. 2_01a / 2_01b.  
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