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ABSTRACT 

In this case study we investigate the potential of time series sequencing machine tool 

control data for quality prediction. A comparison of optimised feature vector based 

random forest classification models, trained on several sequences based on real 

drilling time series data is conducted. The results suggest that while sequence length 

has an inferior effect, the overlap of sequences yields great potential for effective 

classification, limited in practice by computational restrictions. 
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INTRODUCTION 

Increasing complexity in manufacturing is a phenomenon already described in 1994 

(Wiendahl and Scholtissek 1994). (Teti and Kumara 1997) mention the potential of 

introducing artificial intelligence (AI) to manage self-same. However, considering 

the waves of AI development (Zhang et al. 2019) indicating phases of minor and 

major relevance, the introduction of AI applications is currently accelerated by an 

ongoing development phase creating a technology push. Applying ma-chine learning 

methods not only in manufacturing research but in industrial practice is still a growing 

field (Fahle et al. 2020). Against the background of increasingly volatile markets, 

very customer−specific products and more complex production processes with 

constantly high quality requirements, machining faces growing challenges (Spath et 

al. 2013). The rush of new providers of Industrial Internet of Things (IIoT) solutions 

and machine learning applications onto the market open up new possibilities for data 

acquisition and analysis that go beyond the traditional approach of model- and 

empirical-based process analysis (Du Preez and Oosthuizen 2019). In the light of the 

challenges and potential described, traditional production tasks should be critically 

reviewed for their relevance. Reducing waste is one of the main principles in lean 

production for which data analysis can be utilised to in-crease labour productivity 

(Malavasi and Schenetti 2017), either in supporting or eliminating existing processes. 

Hence our underlying goal is to replace one step of the value chain, product quality 

measurement, by predicting product quality through machine tool control signals 

gained during the machining process. This approach has the potential for great cost 

reduction in manufacturing. While there are various devices for data acquisition 

offered (Lenz et al. 2018), the utilisation of machine tool control data bears certain 

advantages, i e. no need for synchronisation of different sources and no reduced 

machining space (Girardin et al. 2010). The potential of data in this use case can only 

be assessed by pre-studies (Cai and Zhu 2015), requiring the investment in data 

acquisition tools. The advanced analytics objective de-rived from this business goal 

is time series classification, particularly strong sequence classification based on the 

definition in (Xing et al. 2010). While there are several approaches for this 

classification problem, we choose a feature vector-based approach, which showed 

potential and limitations in previous studies (Ziegenbein et al. 2020). Here, we 

investigate the influence of different sequencing choices in feature vector−based time 

series classification of machine tool signal data of a drilling process. We suggest a 

method for pre-liminary data set assessment based on feature importance. In section 2 

we describe the method and material of this study. The results are presented in 

section 3. Section 4 discusses and concludes this paper. 

MATERIAL AND METHOD 

While the decision on how to sequence time series data to generate meaningful feature 

vectors is due early in the data mining process, the effect of this choice is measured 
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by model evaluation, which is computationally expensive. Therefore, we evaluate 

slicing strategies by computing feature importance as a metric. This approach is then 

validated by model evaluation of certain samples. 

In this section we describe the systematic approach to find a slicing strategy, the 

underlying technical production process to generate a data set, the experimental 

design, and the validation strategy. 

 

Approach 

The objective of this study is to find a slicing strategy with two rivalling goals: To 

maintain explanatory value while reducing data set size and computing effort. For 

this, two parameters are considered: (1) section width (𝑅) and (2) section shift (𝑆). 

Section width describes the amount of data points included in each section. Shift 

describes the number of data points by which each data window is shifted to form a 

new section. We conduct a design of experiment, a method to optimise parameter 

settings with reduced experimental effort (Siebertz et al. 2017) and define 𝑅 and 𝑆 as 

factors with three levels (−, 0, +). To evaluate the effect of each sequence setting, we 

calculate features for each section, test and compare feature relevance as well as 

computing time. The results are weighted to derive a utility value for each set. To 

provide a sufficient sample size, we draw 60 random time series data sets for each 

experimental setting. To achieve statistical evidence, this process is repeated 30 times 

with new samples each. To validate this approach, three representative settings 

(lowest explanatory value, high time-efficiency, and highest utility value) are used as 

a basis for machine learning classifiers and evaluated accordingly. Each inducer is 

trained on a sample of 1000 similar time series. For model comparison, a train-test 

split of 80% - 20% is chosen and each trained model is evaluated by accuracy, to 

measure bias, and generalisation error, to measure variance. This is repeated 30 times 

with a random split, resulting in n=30 results per set for evaluation. 

Drilling Process and Labelling 

The data base to detect faulty bores through machine learning rather than coordinate 

measurement, requires a certain data quality, which can be defined as fitness for use 

(Wand and Wang 1996). We aim for a large proportion of rejects in the data set for 

testing purposes, which requires a process that is not capable according to (Dietrich 

and Schulze 2009). The experimental design therefore is based on the following 

considerations. 

Scope. Boreholes allow to generate many similar data sets with little material 

consumption. Preliminary tests have shown that very different data sets can be 

generated even with similar processes (Ziegenbein et al. 2020). 

Simplicity. Identical material and process setting for each sample allow to reduce 

influencing factors and enhance data representation in small data. The material 
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chosen is a CrMo-alloyed quenched and tempered steel (1.7225) with a strength of 

900 − 1200 
N

m2 which has a wide range of applications in industry (Thyssenkrupp 

Hohenlimburg GmbH 2019). 

Process Stability. A trade-off between measurable quality degradation and process 

stability is required. The bores are cut with a speed of 𝑣𝑐 = 60 m

min
  feed 𝑓 = 0.11mm. 

Data Characteristics 

Machine tool control data is dense tabular time series data. The rate of missing values 

is about 0.02-0.4 %. These missing instances can be interpolated based on process 

knowledge. Since data acquisition is costly and time intensive, experimental data sets 

are small compared to other domains, bioinformatics for instance. The amount of 

noise in the data set cannot easily be assessed (Wheway 2001). A time series 

decomposition provides insights to safely assume that the data is noisy. However, 

data repair or filtering techniques bear the risk of introducing different properties, as 

discussed in data base research (i. a. (Afrati and Kolaitis 2009; Chomicki and 

Marcinkowski 2005; Fagin et al. 2015)). Since removing noise could remove class 

related information from the data set, no such steps are taken. 

Experimental Design 

To address our research question, we first define our factor levels, then we slice the 

time series accordingly using a sample size of 30 bores of each class, drawing 

balanced samples. We generate nine features from each signal section, measuring 

time consumption. We chose an univariate approach to test feature importance for 

each feature individually, utilising (Christ et al. 2017). Within this software package, 

measures against increased error rates in multiple hypothesis testing (i. a. (Shaffer 

1995; Savin 1984)) are implemented as described in (Benjamini and Yekutieli 

2001).To achieve statistical evidence, this process is repeated 30 times with new 

samples each. The factor settings are summarised in Table 1. 

Section width. The lower bound is defined by the smallest period length of the time 

series, the revolution (𝑈 ≈ 50𝐻𝑧 ), which results in ten data points. The largest 

possible section is one bore sequence. However, since this violates the instance by 

dimension 
𝐼

𝑑
≥ 10 ratio suggested by (Jain and Chandrasekaran 1982), we chose a 

width that is within this boundary. We generate nine features for each of the 𝑑 = 22 

signals, which results in 𝐼 ≥ 3960 for balanced binary classes and a maximal section 

width of 118 data points.  

Overlap. The smallest overlap is zero, the maximal overlap is a shift by one data 

point.  
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Table 1. Factor Settings 

  Setting  

Factor Symbol  − ○  + Unit 

Width R 2 60 118 Data points 

Overlap S R R/2 1 Data points 

 

Model and Hyperparameter Tuning 

The choice of an inducer algorithm is influenced by both the task at hand and 

implications for practical use. The algorithm chosen must be applicable to the 

described data set characteristics. While there are many algorithms arguably 

applicable, several comparative studies found random forest builds to perform very 

well (i. a. (Niculescu-Mizil and Caruana 2005; Caruana and Niculescu-Mizil 2006; 

Caruana et al. 2008; Kotsiantis 2013)). A random forest is a good fit for the 

underlying data set characteristics as it is not prone to noisy data and performs well 

on both smaller and larger data sets, considering our study covering a fairly large 

range of sizes. (Breiman 2001) Choosing an ensemble learner rather than a decision 

tree mitigates overfitting on smaller data sets through the introduction of a random 

element. The ensemble consists of decision trees based on C4.5 as introduced 

by (Quinlan 1987), chosen due to fitting pruning rules. Bootstrapping is used to build 

the trees; impurity is measured by the Gini index.  

In our two-dimensional search space, a full search is not a feasible choice due to its 

time complexity (see (Moshkov 2005) for complexity analysis in decision trees). 

Partial search algorithms showed promise in research, where random search 

outperformed grid search (Bergstra and Bengio 2012). Bayes optimisation enhances 

this idea by restricting the search space based on an assumption for areas of 

interest (Pelikan et al. 1999). This optimisation strategy gained interest in recent time 

due to its wide range on application areas, performance and customisability 

as (Shahriari Bobak et al. 2016) describe in their overview. In our study, we use a 

bayes search with gaussian a priori distribution, that is stratified fivefold cross 

validated. We chose a search space of (5, 15) for tree depth and (5, 500) for forest 

size. The packages sklearn (Pedregosa et al. 2011) and skopt (Head et al. 2020) are 

utilised as a basis for implementation. 

Evaluation Strategy 

The issues in comparing machine learning algorithms are thoroughly discussed 

in (Dietterich 1998). While a tenfold cross validation and accuracy scores are 

commonly used in research (Kohavi and others 1995), there is ongoing debate in 

literature concerned with the ideal metric (i. a (Delgado and Tibau 2019; Hossin and 

Sulaiman 2015; Powers 2015; Sokolova et al. 2006)), and sampling strategy (i. a. 

(Alpaydin 1999; Varoquaux 2018; Varma and Simon 2006)) for model evaluation. 

Since we compare identical inducers on data sets of different properties, we chose to 
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train each model on a subset of 80% of a 1000 bores balanced data set and test it on 

20%, calculating classifier accuracy (correctly classified elements by all elements 

(Forsyth 2019)), and error rate (err = 1 − acc). Training is repeated 30 times for each 

model to generate a larger basis for evaluation. 

RESULTS 

The results of our preliminary study suggest a negative correlation between 

explanatory value and 𝑅, but a positive correlation for 𝑆. The effect for 𝑆 is larger by 

a factor of about six. The results of the preliminary study are summarised in Table 2, 

sorted by utility value. The weights of the target variables are determined by pairwise 

comparison in a preference matrix. Dimensionality, instances, explanatory value, and 

time consumption are considered.  

 
Table 2. Results Design of Experiment 

Experiment  

Mean amt. rel.  

features  Time consumption [s]  Instances per bore Utility value  

R−S+  146.03  8.38  2361 76.18  

R○S+  157.57  8.72  2311 74.58  

R+S+  157.90  8.96  2253 72.71  

R−S○  128.13  1.78  473 15.40  

R−S−  111.63  1.07  237 7.78  

R○S○  113.83  0.72  78 2.66  

R○S−  94.37  0.59  39 1.38  

R+S−  58.70  0.55  20 0.72  

 

Validation. These results are based on the assumption, that the number of relevant 

features, calculated through hypothesis testing is a measure for explanatory value in 

each data set. However, there are various strategies for feature selection, both for 

univariate and multivariate data sets. This approach was chosen based on 

computational considerations and applicability early in the machine learning process. 

However, the reliability of this assumption must be validated. Therefore, we pick 

three representative slicing settings, (Table 2, bold; highest utility value, time-

efficient trade-off, and lowest utility value○) as a basis for training. The models are 

trained with a maximal tree depth of 15 leaves and 500 estimators. The results are 

summarised in Table 3. A high generalisation error for set R+S− suggests overfit on 

the training data. Lower error scores for set R−S+ compared to R−S○ suggest a lower 

variance, reflecting the trade-off between variance and bias in model training. 
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Table 3: Results model evaluation, n=30 

Experiment Instances 

Train accuracy 

(mean) 

Test accuracy 

(mean) 

generalisation error 

(mean)  

R−S+  2,450,742 0.980 0.977 0.003  

R−S○  490,946 0.982 0.964 0.018  

R+S−  19,997 0.997 0.799 0.198  

DISCUSSION AND FUTURE RESEARCH 

The evaluation results suggest that explanatory value of a data set can be measured 

by univariate feature importance testing. R−S+ and R−S○ provided a similar number 

of relevant features and the associated models performed similarly well. The weight 

of time consumption to calculate the utility value resulted in a considerably low utility 

value for R−S○, however a reduced data preparation time by a factor of four may be 

of great interest in real-time applications or when dealing with larger data sets. It is 

worth mentioning, that model complexity has a great influence on model performance 

on larger data sets. Restricting the search space for hyperparameter tuning, may result 

in weaker performance. As discussed briefly, the choice of model evaluation strategy 

should reflect the underlying machine learning goal if applied in practice, as a 

specialised metrics aim to highlight certain model properties.  

This case study shows promise in terms of both, time series slicing and an efficient 

approach to evaluate input data at an early stage. However, we only considered one 

type of data and one type of inducer algorithm. Since early-stage evaluation is of great 

interest in machine learning applications in practice and narrows the search space for 

following steps, it is worth to further investigate this approach, for example 

conducting a benchmark of different feature importance metrics and inducer 

algorithms.  

Since the behaviour of imbalanced data is of high interest from an industrial 

perspective, but cannot be extrapolated, this is a topic for future research.  
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