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ABSTRACT

Humans should be able work more effectively with artificial intelligence-based
systems when they can predict likely failures and form useful mental models of how
the systems work. We conducted a study of human’s mental models of artificial intel-
ligence systems using a high-performing image classifier, focusing on participants’
ability to predict the classification result for a particular image. Participants viewed
individual labeled images in one of two classes and then tried to predict whether
the classifier would label them correctly. In this experiment we explored the effect
of giving participants additional information about an image’s nearest neighbors in
a space representing the otherwise uninterpretable features extracted by the lower
layers of the classifier’s neural network. We found that providing this information did
increase participants’ prediction performance, and that the performance improvement
could be related to the neighbor images’ similarity to the target image. We also found
indications that the presentation of this information may influence people’s own classi-
fication of the target image— that is, rather than just anthropomorphizing the system,
in some cases the humans become “mechanomorphized” in their judgements.
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INTRODUCTION

Effective human-machine teaming depends on interpredictability
(Johnson, et al. 2014, Klein, at al. 2005). From the human viewpoint, this
requires that people be able to make reasonable predictions of machine beh-
avior and performance. Understanding limits to the machine’s performance is
particularly important for teaming (Bansal, et al., 2019). Such understanding
is crucial both to teaming performance per se and to the proper calibration of
human trust in the machine partner (Tomsett, et al., 2020).Machine learning-
[ML]-based systems are problematic in this regard; it is too often difficult for
people to predict a classifier’s response to a particular stimulus or class of sti-
muli. Making such systems interpretable is an active area of research. At the
same time, though, it is important to understand how people develop mental
models of an ML-based system’s operation. Such understanding can inform
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the design of such systems, both for operation and for interactive training
(Amershi, et al. 2014). We are conducting research into the development of
mental models in this context. Earlier work investigated people’s ability to
predict an image classifier’s performance and their development of a mental
model of its function (Bos et al., 2019). We found that, in our experimental
context, people did not learn to predict classifier performance over several
trials. We also found that they tended to attribute to the machine classifier
aspects of their understanding of their own visual and perceptual processes.

In this research, we provided participants with additional information
about classifier behavior through the presentation of additional images
whose features (according to the classifier) are similar to an image for which
they are asked to make a classification prediction. We explore whether this
additional context improves participant accuracy or changes their mental
models of the classifier. This research uses a machine-learning-based image
classifier, which is a relatively familiar and approachable artificial intellige-
nce system. ML-based image classification has shown tremendous progress,
particularly after developments in convolutional neural networks such as
Google’s Inception (Szegedy et al., 2014). Because such systems are very com-
plex and have no human-like semantic preconceptions or other knowledge
of the world, it can be very difficult to know how a trained neural network
comes to its conclusions. How to help humans make sense of these systems
is an active area of research (see Olah, et al. 2018).

We consider a different approach here.We ask whether untrained users can
construct useful mental models to understand and predict these systems’ per-
formance. Humans have impressive powers of inference and their own highly
developed perceptual systems, and with enough experience might be able to
predict performance without fully understanding the underlying mechanism.
There are open questions about whether this is possible, how much expe-
rience would be necessary, and what kinds of analysis and feedback would
optimally support this learning. This study considers one type of additio-
nal context to support learning, exposure to images similar to one on which
classifier performance is to be predicted. In particular, we present participants
with images that are close neighbors of the subject image in a space which
represents features known to be important to the classifier. Other research
has explored presenting users with a spatial layout of similar images, but
in the context of trust calibration rather than mental model investigation
and depicting custom layouts rather than feature-space 1-D or 2-D maps
(Yang, et al. 2020).

Another set of questions relates to the contents of human mental models.
What do users understand, or think they understand, about image classifi-
ers? The answer to this is unknown. There has been little prior research on
human mental models of image classifiers. Prior research has examined men-
tal models of other complex engineered systems, some of which have involved
machine learning (Tullio, et al. 2007). This research has in general sought
to understand the content and structure of mental models, but has not lin-
ked that to human-machine task performance. A mental model is a cognitive
representation of some aspect of the world. People do form mental models
of systems, even opaque systems, or at least respond to questions indicating
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so (Johnson-Laird, 2004; Norman, 1983). Mental models are used to make
predictions (Rouse & Morris, 1986). Developing a mental model involves
both induction and abduction – perception and explanation. (Khemlani &
Johnson-Laird, 2011; Klein, Phillips, Rall, & Peluso, 2007). We consider:

1. Can untrained humans improve their predictions of image classifier
success after one session of practice and informative feedback?

2. Can additional context, in the form of similar images (neighbors in
classifier feature space) further improve predictions of image classifier
success?

3. What mental models of image classifiers do humans construct to help
with this predictive task? Will providing additional context lead to
different mental models?

METHODS

We pursued these questions with an online experiment in which images
are classified as related to the game of baseball or not. Participants were
asked to predict whether the image classification algorithm would corre-
ctly label given images as baseball-related or not. The first two research
questions were addressed by a quantitative analysis of participants’ pre-
diction success, the third by a qualitative analysis of comments made by
participants.

The dataset included 9023 images, of which 4,750 related to baseball and
4,273 did not but typically involved other sports. The baseball images invo-
lved many facets of the game. These included images of professionals or
amateurs playing baseball, baseball stadiums, baseball fields, baseball cards,
and so on. Most of the not-baseball images similarly portrayed other sports,
athletes, and venues, including soccer, basketball, lacrosse, and others. The
classifier combined a pre-trained convolutional neural network (CNN) with
a random forest classifier (Rodriguez, et al. 2014). The CNN was trained
on the Imagenet collection. The final ten layers were removed, leaving a
network which performs featurization somewhat similar to human bottom-
up perception. Using the pretrained network greatly decreases training time
and reduces the number of images needed. The shortened CNN does not
change with training on images to be classified, but performs featurization of
those novel images. These features (a 4,096-length vector) are then fed into a
random forest classifier and trained with images in the set of interest (in this
case of baseball and other sports). The random forest classifier can be trained
relatively quickly and attains over 90% accuracy. However, as images for use
in the experimental task were specifically selected based on their class (base-
ball or not baseball), the distribution of neighbor images, and whether their
classification was correct, this metric does not capture the properties of the
experimental stimuli. In order to determine image similarity, we performed
dimensionality reduction on the feature vector using t-distributed stochastic
neighbor embedding , or t-SNE (Krijthe, et al., 2018). This reduced the image
representation to 2 dimensions. This allowed us to generate a “map” of all
the images, based on their t-SNE coordinates, and to determine the nearest
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neighbors of an image based on the Euclidian distance between them. Many
images had nearest neighbors of a different category.

Participants viewed and made predictions of classifier results for a total
of 60 images across three blocks of 20. In the control case, participants
were shown only the classification target image. In the experimental case,
they were shown the classification target and its four closest neighbors in the
t-SNE space. Participants were also asked for their own classification of the
image, asked to comment on the reason for each prediction, and to rate their
confidence in their predictions. They were also asked general questions after
each trial block. Participants were provided by Amazon Turk. There were
149 participants (75 female, 74 male); they received $15 compensation, plus
a $5 bonus to the top 35% of performers on the final block. The mean age
was 42 (24 to 69). Most participants had completed college (55%). Most
participants had no experience with image classifiers (66%).The study was
approved by the Johns Hopkins School of Medicine IRB (00174285).

The experiment was administered in Qualtrics, with all participants being
given 3 blocks of 20 trials each. On each trial, participants would see an
image and then be asked first if they believe the image was about baseball in
some way, and then asked if the baseball classifier would classify this image
as about baseball in some way or not, rate their confidence in their predi-
ction, and to describe their reasoning behind their prediction (This was free
text, and was optional on any given trial but had to be done at least 5 times
per block.). After each trial, the participant received feedback in the form of
the actual classification for the image. Participants in the control condition
saw single images throughout the 3 blocks, while participants in the experi-
mental condition saw the image as well as its four closest neighbors in a row
beneath it in the second two blocks. Note that target images were the same
in both conditions, and that the order of the second and third blocks were
counterbalanced. The stimuli for each block were chosen so that there were
10 images of baseball and 10 images not of baseball, and the classifier was
correct on 14 of the 20 images. The six incorrect classifications were equ-
ally divided between false positives and false negatives. Chance performance
was thus 70% accuracy, if the participant predicted that the classifier would
always answer accurately. The stimuli were also designed so that the nearest
neighbors would often be of a class different than the target image.

In order to investigate participant’s mental model development, we
coded their text responses, using the Taguette qualitative analysis tool
(Rampin, et al., 2021).We developed a codebook based on prior experiments
(Bos, et al. 2019) and early pilot studies. It included 46 different tags ranging
from mentions of individual items in the image (e.g., sports equipment), to
the presence of people (e.g., players, fans), to action or motions, to the venue
(e.g., playing field, stadium), to more abstract (e.g., an overall baseball-like
gestalt). A subset of participants’ responses was tagged by at least two coders.

RESULTS

The major quantitative objective of the experiment was the accuracy of par-
ticipants’ prediction of the machine’s classification. There was no difference
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in accuracy in the first block between conditions (mean control= 12.0, mean
experimental= 12.3, t(147)= 0.37, p=ns). This was expected, since the task
was the same for the two conditions. In the second block, participants in
both conditions improved but participants in the experimental condition did
significantly better (mean control = 13.4, mean experimental = 13.9, t(147)
= 1.99, p < .05). By the third and final block, the difference was even more
pronounced, with the control group having a mean of 12.8 and the experi-
mental group having a mean of 14.3 correct (t(147 = 5.53, p < .0001). There
was a significant effect of both condition across the 3 blocks (p<.001) as well
as a significant interaction between condition and accuracy F(2, 2) = 6.5,
p<.01. This improvement related to participant’s use of the depiction of the
target image’s nearest neighbors. In general, participants in the experimental
condition do better when more of the neighbors match what the classifier
will say. When fewer of them do, they do worse.

Participants rated their confidence in their prediction of the classifier’s
result for each trial from 1 (None) to 7 (Extremely High Confidence). We
removed the first block from all subsequent analyses, because in that block
participants are first calibrating their confidence as they learn more about
the classifier. More information lowered confidence overall, as control par-
ticipants mean confidence (4.89) was significantly higher than the mean
experimental group (4.75, t(5958) = 3.84, p<.001). There was a signifi-
cant relationship between reported confidence and accuracy over the final
two blocks (from a logistic regression, the regression coefficient was 0.12,
p < .001) along with a significant main effect of condition (coefficient =
−0.12, p<.001), indicating that at a given level of confidence, control parti-
cipants were significantly less accurate than experimental participants. These
results hold if we examine only the final block for each participant as well.
However, the interaction between condition and accuracy was not significant
(Confidence coefficient of 0.13, and condition effect of −0.18, both p<.001,
but interaction of −0.01, p=NS). Further research may be needed to inve-
stigate whether these data represent the well-known overconfidence effect
(Kahneman et al., 1982).

Participants were not always correct in their own classification of the
target images. Unexpectedly, we found a significant difference in ability to
determine the true class of an image between the control group and the expe-
rimental group. Participants in the control group got about 98% of images
correct in all three blocks. Participants in the experimental condition, how-
ever, performed significantly worse. They dropped from 98.9% in the first
block (where they saw the same stimuli as control), to 92.4% correct in their
second block and 93.4% in the third block. All of these differences were
highly significant (p<.001). This suggests that providing the context of an
image in classifier feature space may influence how that image is perceived.
In a sense, this may be the inverse of the effective anthromorphism reported
earlier (Bos, et al. 2019, Mueller 2020); people may “mechanomorphize”
themselves.

Participants exhibited differences in their willingness to comment on a
trial. The overall mean of comments across participants was 59% of trials
with a median of 50%. Participants were more likely to comment if they
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were in the control condition, 62% to 55%, (p <.001). Participants were
most likely to comment on trials in which the classifier incorrectly asserted
that a non-baseball image was about baseball, both across blocks and even
excluding the first block (χ2(3) = 120,p < .0001). These false positives
were the most commented about type of trials. In the design of the expe-
rimental trials, participants comment prior to learning the decision of the
classifier; thus, the elevated rate of commenting is not in response to classi-
fier error. The number of times participants commented on false positives was
also significantly greater than the number of times participants commented
on false negatives. Participants were also more likely to comment when they
predicted that the classifier would make a different classification than they
did, (discordant predictions), 61% vs 58% of the time.

Certain themes emerged from the qualitative analysis. Comments ranged
from short, uninformative comments (e.g., “not sure”) to comments expres-
sing sophisticated mental models (e.g., “The [soccer] ball is much larger than
any ball you would typically see in a baseball image.”). Overall, there were
about 8,000 comments comprising nearly 100K words. We prioritized par-
ticipants who did well in the final block, especially when they predicted the
classifier would make a different prediction than they did (discordant pre-
dictions), as well as participants who performed poorly when they made
discordant predictions. Lower performers struggled to identify any pattern in
why the classifier got some right or wrong (e.g., “Understanding? The only
thing that changed over the course of the experiment was my confusion.”).
Higher performers seemed to adapt a bit better as they tried to discern what
the classifier was doing (e.g., “My ideas about what the classifier would be
good at identifying changed. Instead of bats and gloves, it turned out the field
and players uniform seemed to be more critical.”) Across conditions, partici-
pants in the experimental condition commented more on the classifier itself,
making more comments about it in Blocks 2 and 3 than did control partici-
pants, despite no difference in the first block. Perhaps seeing related images
makes the classifier classification itself more salient, and participants discuss
what it is doing across images rather than discussing the stimulus image itself
in quite as much detail. In the experimental condition, the class of the nei-
ghbors also affected the likelihood of commenting. This likelihood was not
symmetric. When all the neighbors were baseball-related, participants com-
mented 62% of the time. But when all the neighbors were not about baseball,
participants commented only 51% of the time (p<.001).

DISCUSSION AND CONCLUSION

Humans can work more effectively with powerful AI systems when they can
predict likely failures and form useful mental models of how those systems
work. To study this, we asked human participants to predict the outco-
mes from a high-performing but opaque image classifier. This was a short
task (60 images total) and participants had to form whatever mental models
they would use quite quickly, without being able to test a large number of
hypotheses about what cues the classifier might be using. Participants in the
experimental condition, who were exposed to additional context (neighbor
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images) significantly improved the accuracy of their predictions. In addition,
the magnitude of this improvement depended on the similarity of the neigh-
bor images to the target image. Presenting more information by presenting
similar images to the image to be classified had both expected and unex-
pected effects. One expected effect is that is provides more information, so
participants are more likely to accurately assess what the classifier will do,
and we find evidence of this. One unexpected finding is that the image could
influence how the human perceives the image, making them actually worse
at classifying the image than without that extra information. Another unex-
pected finding is that this extra information changes how a participant will
comment on their prediction of the classifier’s result. Participants with less
information tend to discuss image details, whereas those with more seemingly
tried to find a pattern across the images and so focused more on the classifier
itself and less on the image.
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