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ABSTRACT

Application with artificial intelligence (AI) techniques is considered for nuclear power
plants (NPPs) that seem to be the last industry of the technology. The application
includes accident diagnosis, automatic control, and decision support to reduce the
operator’s burden. The most critical problem in their application is the lack of actual
plant data to train and validate the AI algorithms. It is very difficult to collect the
data from operating NPPs and even more to obtain the data about accidents in NPPs
because those situations are very rare. For this reason, most of the studies on the
AI applications to NPPs rely on the simulator that is software to mimic NPPs. How-
ever, it is highly uncertain that an AI algorithm that is trained by using a simulator
can still work well for the actual NPP. This study suggests a Robust AI algorithm
for diagnosing accidents in NPPs. The Robust AI is trained by the data collected in
an environment (e.g., simulator) and can work under a similar but not exactly the
same environment (e.g., actual NPP). Robust AI algorithm applies the Prototypical
Network (PN), which is a kind of Meta-learning to extract major features from a few
datasets and learn by these features. The PN learns a metric space in which classi-
fication can be performed by computing distances to prototype representations of
each class. With the PN, the Robust AI algorithm extracts symptoms from the trai-
ning data in the accident and uses these symptoms in the training of diagnosing
accidents. The symptoms of accidents are almost identical between the simulator
and the actual NPP, although the parametric values can be different. The suggested
Robust AI algorithm is trained using a simulator and tested using another simula-
tor of a different plant type, which is considered an actual plant. The experiment
result shows that the Robust AI algorithm can properly diagnose accidents in different
environments.
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INTRODUCTION

Applying artificial intelligence (AI) techniques has been actively considered
for nuclear power plants (NPPs) where this technology seems to be used lastly.
The application includes accident diagnosis, automatic control, and decision
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support to reduce the operator’s burden (Kim et al., 2020; Lee et al., 2020;
Lee and Kim, 2022).

The most critical issue in their application to NPPs is the lack of actual
plant data to train and validate the AI algorithms. Generally, an AI algorithm
requires a large training dataset on the situations to solve problems. However,
it is difficult (almost impossible) to collect sufficient data from NPPs under
operation. First of all, the data relevant for the AI training are not collected
in NPPs except for some digitalized plants that have the capability of storing
the operational history and log. In addition, collecting data about accidents
or abnormal situations is even more difficult because those situations rarely
occur in actual NPPs (Purba, 2014).

In order to cope with the data scarcity, many researchers use simulators
or thermal-hydraulic codes (Choi et al., 2021; Kim et al., 2021; Yang and
Kim, 2020). Simulators are generally developed for the purpose of operator
training, whereas thermal-hydraulic codes are used to analyze transients and
accidents in NPPs (Petruzzi and D’Auria, 2008). The data produced from
simulators or codes are then utilized for training and validating AI algorithms.

Although simulators and thermal-hydraulic codes can mimic the behavior
of NPPs, the data may differ from the actual NPPs since the simulator con-
figuration is normally simplified. For example, the actual plant behaviors,
such as temperature and pressure, may differ from the simulated data. Thus,
an AI algorithm that is even well trained with the simulator may not work
correctly for actual NPPs.

The meta-learning method can find the features or patterns from data.
Using the extracted feature, the meta-learning method can categorize the data
having similar features. Compred to exiting learning methods for AI algori-
thm, meta-learning can be performed well in the environment having a few
training datasets since the grouped data has similar features. Furthermore,
the meta-learning can make the AI algorithm to work in a new environ-
ment that has not encountered during the training. With these advantages,
the meta-learning has been used in siamese (Koch et al., 2015), matching
(Vinyals et al., 2016), prototypical (Snell et al., 2017), and relation (Sung
et al., 2018) networks.

In this light, this study suggests Robust AI that can work in an environment
different from the training one. The Robust AI is trained by the data collected
in an environment (e.g., simulator or thermal-hydraulic codes) and can work
under a similar but not exactly the same environment (e.g., actual NPP or
different simulator). The Robust AI applies the Prototypical Network (PN),
a kind of meta-learning method. The meta-learning method extracts major
features from a few datasets and learns by these features. This study suggests
a Robust AI algorithm combined with the PN for the diagnosis of acci-
dents in NPPs. To do this, the algorithm was first trained using the compact
nuclear simulator (CNS), of which the reference plant is the Westinghouse
900 MWe pressurized water reactor (PWR). The algorithm was then tested
under the condition generated by PCTRAN that simulates the APR1400 type
reactor.
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Figure 1: Trend of the pressurizer pressure during the heat exchanger pipe break event
in CNS and training simulator in actual NPP.

CONCEPT OF ROBUST AI

For the NPP application, AI agents are generally trained with data such as the
parametric values and status of systems or components, which are collected
from simulators or thermal-hydraulic codes. However, this information at
the data level from these artificial NPPs cannot be exactly the same as the
actual plant because it is impossible for the software to replicate the actual
NPP. Therefore, it is not guaranteed that the agent trained from the simulator
data can work correctly in the actual environment.

Although the simulator and actual plant differ at the data level, the higher
level of information, i.e., the symptoms or trends of parameters in abnormal
or emergency situations, is quite identical between them. For instance, in the
loss of coolant accident (LOCA) at PWRs, the exact values in the pressure
and level of pressurizer are likely to be different between types of reactors,
or between the simulator and the actual plant, but the tendency of parameter
change is similar, e.g., both the pressure and level are decreasing in the acci-
dent. Figure 1 shows an example for the pressurizer pressure in the LOCA.
One dataset is obtained from the simplified simulator, i.e., CNS, whereas the
other is collected from the more accurate simulator, that is, the training simu-
lator in the actual NPP. It can be found that the values at the data level are
different, but the trends are identical between the different sources. The pres-
sure increases after the initiation of even, and then starts to decrease after the
manipulation.

The Robust AI is a novel approach that uses meta-knowledge extracted
from the low level of data. Specifically, this study utilized the trend of para-
meters in diagnosing accidents of NPPs. The extracted meta-knowledge from
the trend in real-time is then classified into accident categories.

The Robust AI is trained and works as illustrated in Figure 2. The training
environment is where the Robust AI learns the extraction of meta-knowledge
from each accident category. The Robust AI applies PN that can derive the
vectorized matrix on meta-knowledge by calculating the Euclidean distance
between each category. The PN is trained to reduce the distance between the
matrixes in the same category and increase the distance to the different cate-
gory. At the working environment, the trained PN generates the matrix from
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Figure 2: Architecture of Robust AI for classification.

the current situation and compares it with the trained matrixes by using the
Euclidean distance. Then, the accident category that has the shortest distance
from the current matrix is identified as the diagnostic result.

ALGORITHM FOR ACCIDENT DIAGNOSIS USING THE ROBUST AI
CONCEPT

This study proposes an accident diagnosis algorithm based on the concept of
Robust AI, as shown in Figure 3. In the training environment, the Robust AI
algorithm is trained for normal, loss of coolant accident (LOCA), steam gene-
rator tube rupture (SGTR), and main steam line break (MSLB) categories.
Trend images sampled from each category are applied to the PN to extract
meta-knowledge. The PN generates prototype vectors, where the vector is an
average of the sampled meta-knowledge.

In the working environment, prototype vectors from the training environ-
ment are compared with the meta-knowledge extracted from the data of real
world. Calculating the Euclidean distance, the Robust AI algorithm finds the
closest category and diagnoses the accident.

Pre-Processing for Generating Trend Image

The purpose of pre-processing is to properly make inputs relevant for the
Robust AI algorithm. The pre-processing first converts the value of an input
parameter in time into a color-coded graph and secondly integrates the graphs
in a bundle. Fifteen parameters were selected by analyzing the emergency
operating procedures in Korean NPPs.

The value of each input parameter is used to generate a graph. Figure 4
(left) shows an example of the graph for the pressurizer level variation in
120 seconds. The graph is then split by comparing the current value with the
steady-state. Figure 4 (right) illustrates the divided four regions with color-
coding as Up (red), Up-gap (white), Down-gap (green), and Down (blue).
Similarly, each input parameter is converted into a color-coded graph.
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Figure 3: Architecture of the Robust AI algorithm for accident diagnosis.

Figure 4: Pre-processing for converting the value of an input parameter in time into a
color-coded graph.

The converted graphs from each input parameter are integrated into a
bundle. Each bundle consists of fifteen graphs on input parameters, as illu-
strated in Figure 5. As an input, the Robust AI algorithm uses the trend image
that is the bundle.

Training of Prototypical Network

This study designed the PN structure for the Robust AI algorithm, as shown
in Figure 6. The PN utilizes the Convolution Neural Network (CNN), which
is well known for extracting major features in an image (Goodfellow et al.,
2016). The CNN layer can extract spatial and topological information by
slicing the image with filters to the computed inner product. The layer is
then combined with a max-pooling layer that can decrease the dimension of
the image. The trend image is connected to the CNN layer with the Recti-
fied Linear Units (Relu) activation function and the max-pooling layer. Then,
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Figure 5: An example of the trend image consisting of fifteen graphs for LOCA category.

Figure 6: Structure of prototypical network.

the output from this combination is processed by the fully connected layer.
Consequently, the PN derives the vectorized matrix on meta-knowledge.

The PN is trained to reduce the distance between meta-knowledges in the
same category. To calculate the distance between meta-knowledges, the PN
uses a squared Euclidean distance formulation that can calculate the distance
between two points in geometric space. Figure 7 shows the squared Euclidean
distance formulation and an example of the same and different categories.
For example, the PN extracts the meta-knowledge by randomly sampling
the trend image from LOCA category. Then, the PN calculates the distance
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Figure 7: Calculation distance using squared Euclidean distance.

between the meta-knowledge and the prototype vectors of each category. The
training PN is proceeded by minimizing the distance in the same category
and maximizing the distance in the different categories. After training, the
PN extracts meta-knowledges from CNS datasets and generates a prototype
vector, an average of vectors from the sampled meta-knowledge.

Accident Classification Using Euclidean Distance

The Robust AI algorithm diagnoses an accident from the datasets of real
NPPs (generated by the PCTRAN in this study) by calculating the Euclidean
distance. The Robust AI algorithm uses the pre-trained PN to extract the
meta-knowledge given from the PCTRAN datasets. Here, the given data is
neither included in training datasets nor related to the PN training. Alth-
ough the extracted meta-knowledge from PCTRAN is not consistent with
those from CNS datasets, the Robust AI algorithm can find the category clo-
sest to the meta-knowledge. For example, the pre-trained PN extracted [0.1,
0.2, 1.0, 0.7] as the meta-knowledge from the PCTRAN data, as shown in
Figure 3. Using the squared Euclidean calculation, the distance between this
meta-knowledge and other vectors of LOCA and SGTR is calculated as respe-
ctively 0.09 for LOCA and 1.50 for SGTR. Since the meta-knowledge from
the PCTRAN has the minimum distance with prototype vectors from CNS
datasets, the Robust AI algorithm consequently diagnoses that the plant state
is in the LOCA category.

TRAINING AND VALIDATION

In this study, the CNS simulator and PCTRAN were used respectively for
training and validation. Training data for the Robust AI were collected
from the CNS, a compact simulator for the reference plant (Westinghouse
900 Mwe PWR). The CNS was originally developed by the Korea Atomic
Energy Research Institute (KAERI) (KAERI, 1990). Then, the validation data
for the Robust AI algorithm were collected from a PCTRAN for Advanced
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Figure 8: Snapshots of CNS and PCTRAN interface.

Table 1. Database used for training and validating Robust AI.

Accident category CNS (Training) PCTRAN (Validation)
Number of
scenarios

Number of
trend images

Number of
scenarios

Number of
trend images

Normal condition 1 30 1 30
Loss of coolant
accident (LOCA)

30 2,700 10 900

Steam generator tube
rupture (SGTR)

15 1,350 10 900

Main steam line break
(MSLB)

36 3,240 10 900

Total 82 7,320 31 2,730

Power Reactor 1400 (ARR1400). Figure 8 shows snapshots of the CNS and
PCTRAN for the reactor coolant system.

The data were collected with a sampling period of 10 seconds for 113
scenarios, where 82 scenarios were from the CNS and 31 scenarios from
the PCTRAN. Table 1 shows the number of scenarios and trend images for
training and validation respectively. The LOCA, SGTR, and MSLB scenarios
contain data for 900 seconds after the accident occurred. The data for nor-
mal scenario were also collected for 300 seconds. The trend image, a bundle
containing fifteen color-coded graphs of input parameters, is sampled from
the scenarios at 10 seconds intervals. Here, the color-coded graph is made for
120 seconds. For instance, if one accident scenario starts at 0 second, the first
trend image includes the color-coded graphs from 0 to 120 seconds. Then,
the second trend image is sampled from 10 to 130 seconds. The number of
trend images is consequently calculated as 90. This study used trend images
of 7,320 for training and trend images of 2,730 for validation.

The suggested Robust AI algorithm has been trained with 82 scenarios
and 7,320 trend images listed above in Table 1. This study also designed a
deep neural network (DNN) to check whether a normal DNN can diagnose
accidents without the Robust AI. The network was then trained with the
same datasets. The training accuracy with CNS datasets is 96.0% for the
Robust AI algorithm and 99.7% for the DNN. The Robust AI algorithm
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Table 2. Accuracy comparisons of the Robust AI algorithm and the DNN.

Accident category DNN (Correct/Total
scenarios)

Robust AI algorithm
(Correct/Total scenarios)

Normal condition 0/10 10/10
Loss of coolant accident
(LOCA)

7/10 10/10

Steam generator tube
rupture (SGTR)

0/10 10/10

Main steam line break
(MSLB)

0/10 6/10

with CNS datasets could correctly diagnose accidents at most trend images
except immediately after the accident.

Table 2 presents the comparative results of the Robust AI algorithm and
the DNN. The scenario accuracy is determined by how correctly the network
in the scenario diagnoses the accident category. In the PCTRAN datasets,
the Robust AI algorithm diagnosed 100% for normal, LOCA, and SGTR
scenarios. However, the DNN could not diagnose events. This result shows
that the Robust AI algorithm can properly diagnose accidents in the different
environments.

CONCLUSION

This study suggested a Robust AI algorithm that comes up with by the auth-
ors. The algorithm was trained using a simulator and tested using another
simulator of a different plant type, which was considered an actual plant.
The algorithm was trained with the compact nuclear simulator (CNS), of
which the reference plant is Westinghouse 900MWe pressurized water rea-
ctor. Then, it was tested in a different simulator, called PCTRAN for the
Advanced Power Reactor-1400. In this study, the Robust AI algorithm can
properly operate to diagnose accidents even in different environments.
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