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ABSTRACT

With unrestrained optimism regarding the possibilities of artificial intelligence (AI)
exceeding its actualization, AI developers are under increasing pressure to integrate
AI into complex human decision-making tasks without fully understanding the impli-
cations of this automation. To investigate how automation may influence human
performance in a high workload environment, this study utilizes a triage scenario from
intrusion detection using a simulated SNORT interface. Participants classify a series
of time-sensitive alerts as real intrusions or false alarms with the assistance of var-
ying levels of automation (LOA) from no automation to fully autonomous. Preliminary
results showed that participants tend to prefer and have some performance benefits
with intermediate levels of automation.
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BACKGROUND

Cyber analysts are inundated with the exhausting task of manually reviewing
tens of thousands of network intrusion alerts per day, with nearly all of them
being false alarms (Thomson, 2018). Their task involves quickly whitelisting
as many of the false alarms as possible and passing possible threats up the
chain for further analysis. Despite being tedious and having a relatively low
hit rate, the cost of missing a true alert is severe: an adversary may gain access
to your secured network. From that point, it can take upwards of 200 ormore
days to detect such intrusions after they are initially missed. Compounding
this problem of alert fatigue, the Prevalence Paradox (Sawyer and Hancock,
2018) identifies that even under ideal conditions, when true hit rates fall
below one percent there is an inadvertent drop in vigilance to detect the true
alert signal.

This high false-alarm rate is due to the fact that much of intrusion
detection involves anomaly detection over network packets and compu-
ter processes, usually involving rules that only look at a single point in
time. For instance, a rule looking for possible ransomware by flagging a
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large quantity of hard drive writes could falsely flag a computer zipping
up a dataset to be archived. To combat this issue, many researchers are
turning to automation techniques to process many of these alerts for the
analysts.

With a rush to provide technical advancements to analysts by developing
novel automation, there has been a scarcity of research into the effects of
varying levels of automation in the cyber domain. A review of research into
explainable artificial intelligence has shown that adding automation may
actually increase workload (to understand the automation) while not neces-
sarily increasing performance (Endsley and Kaber, 1999). Furthermore, if
the human does not trust the AI appropriately, then the AI may be over- or
under-used based on its actual competency. AI-based automation that is too
intrusive may overwhelm the human with added workload, especially if the
interface has not been adequately designed (Sawyer and Hancock, 2018).

Taken together, in the context of cyber analysts any form of automation
needs to not only reduce the operator’s overall workload and/or increase effi-
ciency (without increasing workload), but also needs to take into account the
limitation of human vigilance. In the remainder of this paper we describe how
we adapted Sheridan & Verplank’s (Sheridan and Verplank, 1978) Levels of
Automation (LOA) paradigm into an intrusion detection scenario, as well as
provide some preliminary results as we validate our methodology.

LEVELS OF AUTOMATION

Operators and autonomous systems each have relative advantages and disa-
dvantages that interact in a manner more complex than the sum of each of
their abilities. Sheridan and Verplank (Sheridan and Verplank, 1978) ini-
tially investigated varying LOA for teleoperation of an undersea explorer
robot. They identified that optimal LOA should be decided on a case-by-
case basis based on task demands and the capabilities of the automation in
question, and described a set of ten levels from no automation through fully-
autonomous. For an autonomous system to be used effectively, a user must
believe it to be capable of performing well, especially when human decision-
making begins to be automated by the system. If the user does not trust
the system, it will not be used. The extant body of literature (Endsley and
Kaber, 1999) identifies that an intermediate level of automation is generally
appropriate for most dynamic control tasks roughly analogous to intrusion
detection. Specifically, this is when automation makes recommendations that
an operator can accept or override.

Endsley and Kaber (Sheridan and Verplank, 1978; Kaber and Ends-
ley, 2004) argue that a subset of five-levels is best applicable to human-
automation tasks where an operator/analyst needs to make decisions based
on system information. Table 1 represents the levels of this model in ascen-
ding order of proportion of tasks performed by automation.

In determining the optimal LOA for cyber analysts performing initial
triage, we are focusing primarily on two factors: the effectiveness of the auto-
mation and the operator’s level of trust in the automation. Other factors (such
as overall analyst workload and design decisions in the user interface) are
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Table 1. Levels of automation from Endsley (Kaber and Endsley, 2004).

Level Name Task could be performed by the:

1 Manual Control Operator with no assistance from the system
2 Decision Support Operator with input in the form of

recommendations provided by the system
3 Consensual AI System with the consent of the operator required to

carry out actions
4 Monitored AI System to be automatically implemented unless

vetoed by the operator
5 Full Automaton System with no operator interaction

beyond the scope of the present study, although we acknowledge that they
will bias the analyst, however those effects should be indirectly influenced by
their propensity to trust the automation.

Previous research (Onnasch et al. 2014; Wickens, 2002) has clearly shown
a threshold LOA beyond which negative consequences result and increase
in degree of severity with increasing LOA. This threshold is characterized as
the point at which automation moves from information processing functi-
ons to action selection (i.e., moving from LOA3 to LOA4 in the present
study), and this is due to a complex set of psychological factors in the analyst.
While offloading part of a complex task to a teammate can help overall task
performance, there can be negative consequences when an analyst believes
that the teammate is not as effective or does not think similarly to themse-
lves. The intensity of the negative effects of teaming is exacerbated when the
collaborator is automated (Onnasch et al. 2014). As pointed out by (Onna-
sch et al. 2014), it is exceedingly difficult to consider AI as a teammate.
Furthermore, many automation algorithms are black box (Thomson and Sch-
oenherr, 2004), that is, one cannot explain how the automation is making a
given decision.

INTRUSION DETECTION METHODOLOGY

To establish the impacts on varying levels of automation during initial triage
of intrusions detection, we must first identify a scenario with sufficient ecolo-
gical validity to have a path to influence operational environments, but also
be amenable to prototyping on non-expert users. We chose to simulate the
operation of the Snort interface (Caswell and Beale, 2004) (see Figure 1) as it
is a real Intrusion Detection Software (IDS) which utilizes rule-based network
traffic alerts to present to a given analyst. While the full task of the analyst
would involve additional visualization of network traffic based on tempo-
ral patterns, the Snort interface provides a reasonably complex simulation
environment to validate against novice users.

Cyber analysts work long hours on a tedious task, which compounds the
chances of having reduced vigilance and is further exacerbated by the high
false alert rate. Analysts view alerts in software that organizes alert elements
into categories in a spreadsheet-like view. The rule-based IDS operates on all
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Figure 1: A mockup of the Snort interface (Hart, 2006).

of the traffic and filters the data, only passing along the traffic that is poten-
tially dangerous. The elements of alerts an analyst scans for to determine
whether an alert is benign or threatening covers a wide range of potential
warning signs. The suspect elements could be from given IP addresses or
classes of IP addresses (indicating a specific attacker), type of activity (e.g.,
accessing a sensitive file), or outbound traffic from a potential insider threat.
Spreading attention over so many different fields increases the cognitive wor-
kload demands on the analyst. In addition, analysts need to perform a host
of different higher-level cognitive tasks to perform their duties. These include
(but are not limited to) pattern recognition, grouping, place keeping, filtering,
reading, memory recall, and decision making.

To integrate varying LOA, we created a whitelisting column at the left of
the interface where an automated AI may make recommendations (or full
decisions) for the user. The user’s task is to determine whether a given row’s
alert is a true threat or a false alarm based on a set of rules provided at the
beginning of the scenario.

PRESENT STUDY

A pilot interface was designed based on the Snort interface in Figure 1, inte-
grating an additional response column that was used to provide an AI-based
recommendation on whether the alert is a true positive or false alarm. The
study examines how well participants will use an automated AI based on five
levels of automation from no-automation through full automation, with the
critical levels being 2-4 (decision support, consensual AI, and monitored AI,
respectively), and varying attack rate to gauge participants’ sensitivity to the
attack signal. A simplification to cut down on the information that parti-
cipants are required to process, alerts designated as threats were limited to
ones with one of a list of 20 codes that indicated a true threat which were
spread evenly across four fields, instead of having participants searching for
patterns across multiple alerts.

The complete study was a mixed 5 (between; LOA) x 2 (within; hit rate
5% or 20%) counterbalanced design. The AI was programmed with an 80%
hit rate and 20% false alarm rate, whose values were decided-upon based on
pilot research.
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METHODS

Participants

A total of 78 participants were recruited through Amazon Mechanical Turk.
Of those, 23 did not meet device compatibility requirements to run the
experiment, 15 participants were bots and dropped, and 40 participants
successfully completed the pilot study.

Materials

The study was designed using the E-Prime 3.0 experiment software and
participants completed the study using the E-Prime Go 1.0 application. Sti-
muli were designed by creating a set of five relevant fields derived from the
Snort IDS interface. These fields include the Class of alert, the Session Initi-
ation Protocol, the Source Port, and the Destination Port. After the session,
participants completed three surveys: NASA-TLX workload (Hart, 2006),
Trust in Automation (Chien et al. 2014), and the System Usability Scale
(Bangor et al. 2008).

Procedure

Participants initially were instructed to check a series of system requirements
to determine whether their systems were compatible with the software. They
were then provided $1 and if compatible, provided the option to complete
the main study for an additional $7.50.

The experiment began with an initial-instructions screen which described
the task as acting as a cyber analyst to correctly identify as many hits and
false alarms as they could. The next instructions screen provided the example
interface (see Figure 1). The third screen instructed the participants that thre-
ats contained one of five prescribed codes in each of four fields. They were
encouraged to write these codes down so they could refer to them during
the course of the experiment. We encouraged this action because there was
no means of verifying that participants would not write the codes down, so
we decided to offer all of them the chance to do so. This final instructions
screen also informed the participants that they would be scored for each of
the 20 alerts in the following way: Threat reported as a hit earned ten points;
Threat reported as a false alarm lost ten points; Nonthreat reported as a false
alarm earned one point; and Nonthreat reported as a hit lost one point. We
believed that this ten-to-one ratio would produce an emphasis on correctly
identifying hits. Participants were also instructed that they would have a time
limit of 1.5 minutes per trial. They were also instructed that they would earn
an extra $2.50 over their $7.50 fee if they got to a certain undisclosed score
threshold to promote a focus on accuracy and maintaining vigilance throu-
ghout the task. In truth, everyone who performed the experiment received
the bonus.

Participants moved from the instructions to one trial of practice at LOA
level 1. Each alert had a 20% chance of being a threat. Participants used
their mouse to click on the “Hit” button to indicate a threat or the “False
Alarm” button to indicate a nonthreat. When they finished, they pressed the
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“Done” button. No other buttons responded to clicks on the interface. A
feedback screen appeared following the time limit or when the participant
pressed “Done”that presented the response and correct answer for each alert.
No score appeared for the practice, however in the main experiment, each
feedback screen showed the new score and the score from after the previous
trial.

Following the practice feedback screen, participants were instructed about
the AI that would operate while performing the main trials. The following
are summaries of those instructions: LOA 1 AI would operate in the back-
ground but not offer help; LOA 2 AI would provide recommendations for
each alert, but participants would need to select their own response for each
alert (distinguished by color); LOA 3 AI would provide recommendations
that participants would merely need to leave unclicked if they agreed with
them; LOA 4 AI would provide recommendations, but if the subject overrode
one, all the recommendations would disappear and the participant would
need to select a response for each alert; and LOA 5 would make all decisi-
ons for the participants and skip the response screen to present the feedback
screen.

Within a block, participants would see 10 trials. In each trial, 20 alerts
were presented on the display and the participant had to mark whether it
was a threat or false alarm (in LOA1/2), or to accept/reject the AI recom-
mendations (LOA3/4). Each participant performed two experimental blocks
counterbalanced by block order based on even and odd subject number. One
block had one threat per 20 alerts (5%), averaged over all trials and the other
had four threats per 20 alerts on average (20%). Participants received feed-
back after each trial with their current score and howmany alerts they hit and
missed. Detecting or failing to detect a nonthreat led to a respective increase
or decrease of one point, while detecting or failing to detect a threat led to
a respective increase or decrease of ten points. Following the two blocks of
trials, participants completed the surveys and were thanked and reimbursed.

RESULTS & DISCUSSION

A summary of our results for this pilot study is presented in Table 2 below.
Accuracy is almost uniformly high; however, this is likely due to a strategy
of defaulting to pressing ‘false alarm’ which would result in 95% accuracy
and 80% accuracy respectively between the 5% and 20% conditions. This
interpretation was supported by participants’ stronger positive response bias.
More task appropriate measures would be to examine the related miss and
false alarm rates. The AI (see LOA5 for AI performance on Full Automation)
exhibited the average 15%miss rate and 20% false alarm rate, while humans
tended to miss 40-55% of all true attacks while exhibiting a relatively low
false alarm rate between 1-12%. This resulted in participants having slightly
higher sensitivity than the AI in LOAs 1-3, despite a greatly higher miss rate.

The results of this study offer a striking comparison between task demands
and howwell participants integrated with the LOA. Participants across LOAs
2-4 were likely to override the AI recommendation of a Hit, resulting in a
much higher miss rate as well as a lower false alarm rate. This was despite
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Table 2. Summary of mean participant results for the present study.

Condition Hit Rate FA Rate Response Bias D’ Overall Accuracy

LOA1 5% 0.4476 0.0166 1.130557 1.9978 0.9533
20% 0.4919 0.0089 1.194268 2.3481 0.8912

LOA2 5% 0.4333 0.0116 1.219222 2.1027 0.9584
20% 0.6439 0.0577 0.602723 1.9435 0.8816

LOA3 5% 0.5100 0.0326 0.909191 1.8685 0.9445
20% 0.6700 0.0600 0.55743 1.9947 0.8860

LOA4 5% 0.5600 0.1276 0.493393 1.2887 0.8465
20% 0.5900 0.1013 0.523344 1.5018 0.8361

LOA5 5% 0.8500 0.2070 -0.10981 1.8532 0.7958
20% 0.8104 0.1969 -0.0133 1.7323 0.8046

Overall 5% 0.5958 0.0909 0.546453 1.5781 0.8913
20% 0.6671 0.0969 0.433691 1.7310 0.8556

the cost of a false alarm being set to -1 while the cost of a miss was -10, which
should have biased them to a risky strategy leading to relatively higher false
alarms. This implies that instructions alone were insufficient to convey the
relative cost of missing a true intrusion. Finally, participants also exhibited the
most trust in automation (3.6/5) in LOA2 (making only recommendations)
comparedwith other conditions (averaging 2.8/5).Whether participants were
implicitly aware of the higher false alarm rate or had some other reason for
not trusting the AI will be a focus in future work using this interface.

CONCLUSION

The goals of this study were to establish a paradigm in which LOA could
be investigated with the purpose of improving the human factors of AI
aids in human-AI collaboration tasks, specifically initial triage of intrusion
detection. While several interesting results appear to validate our broad
hypothesis that an intermediate level of automation best supported human-
AI collaboration for intrusion detection, there is much future work which
still needs to be completed to determine a broader Receiver-Operator Curve
(ROC) for human-AI collaboration by varying the payoff matrices, fine-
tuning the automation in LOA4, and wire-framing UI improvements to best
present the AI decisions/recommendations to the user.
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