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ABSTRACT

Studies for stress and student performance with multimodal sensor measurements
have been a recent topic of discussion among research educators. With the advances
in computational hardware and the use of Machine learning strategies, scholars can
now deal with data of high dimensionality and provide a way to predict new estimates
for future research designs. In this paper, the process to generate and obtain a mul-
timodal dataset including physiological measurements (e.g., electrodermal activity-
EDA) from wearable devices is presented. Through the use of a Feature Generation
Toolkit for Wearable Data, the time to extract clean, and generate the data was redu-
ced and several new features were generated in both the time and frequency domain.
Statistical analysis was conducted using several variables between the wearable sen-
sor’s raw data and the newly generated features to find possible associations between
the variables to be fed into Machine Learning algorithms as predictors. Machine lear-
ning models from an openly available multimodal dataset were developed and results
were compared against previous studies to evaluate the utility of these approaches and
tools.

Keywords: Engineering education, Physiological sensing, Student performance, Machine
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INTRODUCTION

Since the engineering discipline was first taught at universities, its curriculum
has included math and physics principles, which makes its teaching and lear-
ning difficult and stressful (Bigotte et al., 2012; Kausar, 2010; Morgan,1990).
Concerning the latter, few studies have been conducted connecting student
performance and stress in engineering (e.g., Husman et al., 2015; Villanueva
et al., 2018; Villanueva Alarcón et al., 2021).

Studies for stress and student performance with multimodal sensor measu-
rement have recently gained momentum, especially using high computational
hardware (Schmidt et al, 2018; Villanueva Alarcón et al, 2021) and mach-
ine learning (ML). Machine learning strategies are helpful to deal with data
of high dimensionality (a large number of inputs or variables) and provide
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a way to predict new estimates for possible research designs in the future.
In this work, we evaluate two paths, one being the statistical analysis and
the other being the data processing and feature generation (inputs or varia-
bles fed to the process or algorithm) using a third-party toolkit for wearable
data. Data from our experiment, cleaning, organization and processing are
presented. In the first path, the statistical analysis, we aim to find possible or
better variables for posterior application in prediction or classification algo-
rithms. The second path, using a third-party toolkit, consists of two steps:
one being the generation of features in both the time and frequency domain,
to be fed to the statistical analysis process making the data larger and robust.
This step speeds up the process of generating variables removing the need
for hand calculations or custom script programming. The second step of this
path consists of the evaluation of the toolkit reliability by comparing several
ML algorithms’ performances on known wearable sensor datasets (Föll et al.,
2021; Schmidt et al., 2018).

We used a combination of proprietary and free openly available tools, sof-
tware, and scripts. For statistical analysis, we used the IBM SPSS Statistics
version 26 software package. For generating data features we used a com-
bination of customized scripts developed in Matlab Version 2019b and an
open-source Python package, FLIRT, that focuses on processing physiologi-
cal data for getting the features from sensors (Föll et al., 2021). For the ML
processing, we used Scikit-learn, a machine learning library for the Python
programming language. Also, we made use of WESAD (Wearable Stress and
Affect Detection) which is a free and openly available dataset that consists
of measurements of multiple sensors including EDA from 15 subjects, which
serve as baselines for stress levels (Schmidt et al, 2018). We trained several
ML models using features generated with FLIRT on the WESAD data and
compared results with those reported by Föll et al. (2021) and Schmidt et al.
(2018). By exploiting the two paths, the statistical analysis and the use and
evaluation of a wearable toolkit, we first expect to get a better understanding
of new possible predictors for further exploration in predictive models. Also
by using the tools proposed, reducing the time to process and generate a new
trusty data set.

METHODS

Research Design

The data of this study is a subset of a larger National Science Foundation-
funded research (EEC-1661100, 1661117, and 2120451). The research was
a quasi-experimental design that integrated electrodermal activity (EDA)
sensor measurements with self-reports and salivary biomarkers of stress
(e.g., salivary alpha-amylase (sAA)) for triangulation. Participants were engi-
neering students who were enrolled in a Statics Engineering course at a
midwestern institution in the U.S. In coordination with the instructor, a pra-
ctice exam of equivalent format and content was used for the experimental
study (Villanueva et al., 2019). Self-reports and salivary analysis are not
reported in this study although their onset and offset timestamps for each
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exam event (e.g., item-level questions) were used to match and synchro-
nize to specified salivary data collection points for subsequent analysis and
triangulation.

One hundred and sixty-one students took the practice Statics exam either
in Fall 2018 or Spring 2019. Three practice exams, one for each midterm,
were designed and approved by the class instructor and labeled as midterm 1
(M1), midterm 2 (M2), and midterm 3 (M3), respectively. For this study, we
focused onM2 as it included a more comprehensive data set compared to the
other mid-terms. M2 had 15 questions; the first 6 questions were conceptual
and the remaining analytical (Villanueva Alarcón et al., 2021). The data col-
lection process and protocol are described in several studies (Villanueva et al.,
2018; Villanueva et al., 2019; Villanueva Alarcón et al, 2021).

Participants took the practice exam on a laptop computer that purposely
had a web browser already opened. The browser was pointing to a local
web-server page that was hosting a custom-developed web interface for the
practice exam. The exam application was programmed using PHP and Java-
Script custom-developed by our team. The web interface for the practice
exam was designed so that participants had to answer questions sequenti-
ally. One exam question had to be answered before going to the next one.
Once a question was answered, participants did not have the option to go
back to the previous one. In-between questions the web application introdu-
ced both, dummy questions, to allow for any lag in EDA data collection to be
captured and surveys questions were prefaced at the onset of each question
although these surveys were not used for the analysis presented. The dum-
mies questions were introduced for recovery in-between questions and were
not used for grading thus did not affect students’ exam performance results.

EDAmeasurements consisted of two types of signals that might be affected
skin conductance. The tonic skin conductance level and phasic skin condu-
ctance response. The tonic values changes are slow and smooth through time
and the phasic peak values change rapidly with a stimulus (Empatica, 2022).

During the experiment, five salivary samples were collected, one at the
beginning, the second at mid-exam (approximately 45 minutes into the
exam), one at the end of the exam, and twice during recovery time every 10
minutes. The first three samples are considered to be the stimulus or reacti-
vity in the experiment, and the following two are the recovery.We labeled the
time samples for each time stamp collection as T1, T2, T3, T4, and T5 respe-
ctively, see Figure 1. A note in stimulus and recovery time: we followed Vrijen
et al. (2018) to calculate reactivity as they suggest that there are indications
that reactivity is related to stress. Reactivity and recovery can be estimated
by using equations 1 and 2, Vrijen et al. (2018). While participants are taking
the exam time between T1 to T3 represents the stimulus, see figure 1. The
same for the recovery from T3-T5, respectively.

Reactivity = (sAA T3 − sAA T1)/sAA T1 (1)

Recovery = (sAA T5 − sAA T3)/sAA T3 (2)

The web interface was designed to prompt participants for time marker
data collection at set times. It is important to note that before the study
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Figure 1: Data collection time stamp labeling during stimulus/reactivity and recovery.
T1: practice exam begins, T2: 45 minutes into the exam, T3: end of the exam, T4: first
10 minutes of recovery, T5: 20 minutes of recovery. T1-T3 stimulus time while taking
the practice exam, T3-T5 recovery time after the practice exam.

Figure 2: Sample screen of an event file generated by the web exam.

began, all participants were trained through a short 3-5 minute video on
how to properly provide the salivary sample and all participants swished
their mouths with clean, distilled water 10 minutes before the study began
per recommended company guidelines (Salimetrics, n.d.). Data collection
and measurements were timestamped automatically in the web interface
along with several other measurements, such as indicators of performance
as described by Villanueva Alarcón et al (2021). At the end of the exam, a
comma-separated value (CSV) file with a list of events was generated auto-
matically for each participant. Each line in this file has 10 columns that
provided timestamped information of the participant activities during the
exam (Figure 2).

Data Curing and Pre-Processing

We created a single folder for each participant’s data set. In each folder, we
placed the previously generated event file, plus unzipped files from the weara-
ble Empatica sensor, which provided EDA measurements. Empatica sensors
contain six types of measurements in the CSV files such as accelerometer,
blood volume pressure, EDA, heart rate, inter-beat interval, and temperature
EDA Measurements are sampled at 4Hz, the other might be sampled at ano-
ther rate as specified by Empatica (2021). In this work, we only focused on
the EDA measurements.

All survey and salivary data were compiled, cleaned, and synthesized into
a single master file with participant identifiers replaced with study IDs to
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anonymize participant entries. We selected a reduced sample set of 69 par-
ticipants from the M2 practice exam dataset. The selected sample files were
complete and were less prone to errors. Files with any missing, undefined or
unrepresentable values (Nan Values) were rejected to reduce the use of other
techniques for dealing with such values and to avoid re-calculations when
errors occur due to these kinds of values. We evaluated 28 parameters from
the tonic and phasic EDA data related to the T1-T5 values.

From each participant’s folder, we used the EDA file from the Empatica
sensor and the event file from the M2 practice exam to generate all the sta-
tistical data for posterior analysis. First, we ran a custom script in Matlab
2019b to loop into each participant folder and read the CSV event file. We
were interested to collect information about each time the participant fini-
shed a time-stamped data sample collection during the exam. From there, we
obtained timestamps for each salivary sample and labeled them as T1-T5 (see
Figure 1). Tonic and phasic values from EDA data were processed and extra-
cted with the FLIRT Python library (Föll et al., 2021) and later post-processed
in Matlab to grab values at the previously time-stamped values at T1-T5. At
the same time, we obtained features from the raw EDA data following the
indications from Föll et al. (2021) for posterior ML algorithms processing.
From the phasic and tonic EDA data alone, we obtained 82 columns of fea-
tures such as mean, peaks, min, max, among others (Föll et al., 2021). We
left out six features all related to entropy calculations. Some of their values
had NaN as values which makes it difficult for the ML algorithm. In case
these features are required any imputations techniques might be used (Yuan,
2000).

For the statistical analysis, our dataset consisted of tonic and phasic mean
EDA values for each of the T1-T5 time stamps. Normalized changes of these
values were also estimated as done in other studies (Vrijen et al., 2018). We
also estimated the area under the curve with respect to increase (AUCI), and
the area under the curve with respect to ground (AUCG) (Pruessner et al.,
2003) for both tonic and phasic values. Both AUCI and AUCG are methods
to estimate the area under the curve and are frequently associated and used in
studies with repeated measurements over time as indicated by Pruessner et al.
(2003). These values were also added to the previously calculated features for
posterior statical analysis.

ANALYSIS AND DISCUSSION

We evaluated 28 parameters from the tonic. Table 1 shows results for stu-
dents’ performance in the exam. As can be seen in the third row the mean
value of questions answered by T2 was 10.551. That means that at a T2 point
(after 45mins) most of the students had answered over 10 questions. The par-
tial performance until that point consisted of mixed responses to analytical
and conceptual questions. For the rest of the exam T3, the remaining que-
stions were from 10 to 15 which were all are analytical (only 0.37 of the
exam). It can be seen that the performance for the T2 questions, which have
6 conceptual questions, have a larger mean of 0.655 (Mid-Exam) against the
0.37 for the rest of the exam (4th row). This is a clear indication that students
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Table 1. Descriptive statistics for students’ performance at T2 and T3. Problems in an
engineering statics practice exam; N= 69; data presented as mean± standard
error of mean.

Measurement Time Mean ± SEM

Student Performance
(conceptual and Analytical
questions)

at T2 (45 minutes into the
exam)

65.5% ± 1.74%

Questions Answered by students at T2 (45 minutes into the
exam)

10.551 ± 1.510

Student Performance at T3 57.4% ± 1.54%
Student performance for
Analytical Questions only

past 45 minutes into the
exam (after T2)

37.0% ± 2.69%

Table 2. Correlation for students’ performance for problems in an engineering statics
practice exam; N= 69; statistical significance as calculated through correlation
is p<0.05 unless noted.

Student Performance
at the End of Exam

AUCi
Tonic

Student Performance (conceptual and Analytical
questions) at T2 (45 minutes into the exam)

0.844

Student performance for Analytical Questions only
(past 45 minutes into the exam)

0.508 −0.238

performed better for the conceptual problems (against 0.574 for the rest of
the exam which aligns with Villanueva et al. (2021) results where students’
performance results were 65% for conceptual problems and only 58% for
analytical in a practice exam.

Additionally, a Pearson correlation analysis was conducted for all varia-
bles, and we summarized results in Tables 2, 3, and 4 for those correlations
which are statically significant only. From Table 2, we can distinguish that
participants that perform well by the T2 had a strong positive correlation
with the exam final performance. Also, those that performed well with the
analytical questions (questions answered between T2-T3) also had a strong
positive correlation with the final exam performance, 0.844 and 0.508 respe-
ctively. This implies that students that start well on the exam, will perform
better throughout the exam. We found a negative and low correlation of
−0.238 between student performance for analytical questions (questions
answered post 45 minutes into the exam), and the area under curve AUCi
for tonic values of EDA measurements. This correlation says the better the
performance students get for analytical questions the smaller the area under
curve AUCi gets.

Results related to the stimulus between T1 and T3 are shown in Table 3.
The stimulus has a strong correlation with the Normalized Change of the
Mean Tonic values (MTD-NC) between T1-T3 (full stimulus). Normalized
data is estimated following Vrijen et al., (2018) and it has a correlation value
of 0.994. This correlation suggests that students who show changes in their
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Table 3. Correlation for stimulus time (T1-T3) for problems in an engineering statics
practice exam; N= 69; statistical significance as calculated through correlation
is p<0.05 unless noted.

Stimulus / Reactivity
Correlations

Normalized Change of the
Mean Tonic values at T2

Mean Tonic
values At T1

Mean Tonic
values At T2

Normalized Change of the Mean
Tonic values (Full Stimulus
T1-T3)

0.994

Normalized Change of the Mean
Tonic values at T3

−0.277 −0.272

Table 4. Correlation for recovery time (T3-T5) for conceptual and analytical problems
in an engineering statics practice exam; N = 69; statistical significance as
calculated through correlation is p<0.05 unless noted.

Recovery Correlations Normalized Change
of the Mean Tonic
values (T4-T5)

Normalized
Change of the

Mean Tonic values
(T3-T5)

Questions
Answered
(at T2)

Mean Phasic
Values
(at T3)

Normalized Change of
the Mean Tonic values
(T3-T4)

−0.31 −0.748

Normalized Change of
the Mean Tonic values
(T4-T5)

−0.28

Normalized Change of
the Mean Tonic values
(T3-T5)

−0.246

tonic values from the wearable sensor at T2 will show similar changes in the
tonic values throughout the stimulus period (T1-T3). The rest of the corre-
lations are low and negative correlations for T2-T3 and the mean value of
the tonic data at T1-T2 and T2-T3, −0.277 and -0.272 respectively. These
correlations are statically significant and occur between the mean of the tonic
value and the change of the mean of the tonic values for the end of the exam,
T1 (Start of the exam) and T2 (45 minutes into the exam).

The correlations occurring in the recovery time between T3 and T5, T4
inclusive are summarized in Table 4. Only correlations among variables that
are statistically significant are presented. The four resultant correlations
between Normalized Change of the Mean Tonic values (for recovery time
(T3-T4, T4-T5, and T3-T5)) and questions answered (at T2) and mean pha-
sic values (at T3) are negative with only one having a strong correlation low
to moderate for the rest. A strong negative correlation exists between the nor-
malized change of the mean tonic values for recovery time T3-T5 and T3-T4.
One interesting correlation is between Questions Answered and the change
of the mean tonic EDA values at the last minutes of recovery (T4-T5). If the
participant has not been able to submit many questions, likely the student
has not had a good exam experience or time has not been enough. Another
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Table 5. Classification Performance using FLIRT on the WESDA dataset. For WESAD
and FLIRT F1-score are reported with standard deviation. No standard devia-
tion is reported for LDA, which is a deterministic model. Our implementation
reports weighted F1-Score with standard deviation for 5 randomly initialized
runs. F1-Macro score is reported in parenthesis and bold below. *Extended
Kalman Filter.

EDA Parameter window
selection

LDA AB DT

WESAD - 42.72 49.06
(0.59)

45.48
(0.17)

FLIRT Modular Ekf* cxEDA 51.54 51.96
(0.32)

44.70
(0.45)

Our Implementation
FLIRT Modular on
WESAD Dataset

Ekf* cvxEDA 41.0
(16.0)

46.0
(0.41)
(25.0)

50.0
(0.35)
(25.0)

option is that students were not as prepared as expected for the exam. This
correlation was −0.28, negative, and moderate correlation. The last column
includes the only value of phasic data, or the rapid change in EDA values,
with a statically significant correlation. The mean phasic value at T3 and the
normalized tonic mean change at T4-T5, has a moderate negative correlation
of −0.246.

Machine Learning Training

Weused the FLIRT to generate the features using theWESADdataset with the
same parameters used in those studies (Föll et al., 2021; Schmidt et al., 2018).
We used linear discriminant analysis (LDA), AdaBoost (AB), and decision tree
(DT) classifiers for our tests. We found the information provided by Schmidt
et al. (2018) to be limited regarding the classification algorithm parameter
as did Föll et al. (2021). We followed Föll et al. (2021) configurations for
parameters and window selection. We used a 60 secs window with a step
size, and scored with a macro F1-score, see Table 5.

Results for F1-score are slightly similar between previous studies and our
weighted F1-score (Föll et al., 2021; Schmidt et al., 2018). A considerable
difference is noticed when comparing the F1-Macro score among the three
implementations. In our case, we choose the same labeling scheme provided
in theWESAD dataset which goes from 0 to 7. In theWESAD documentation
Schmidt et al (2018) ask to ignore labels from 5 to 7. We are not sure how
both these studies (Schmidt et al., 2018; Föll et al., 2021) handled those
labels which we think might be the reason for the significant difference in the
F1-Macro score.

CONCLUSION

In this paper, we presented the process to generate and obtain a multimodal
dataset including EDA measurements from wearable devices. We made use
of A Feature Generation Toolkit for Wearable Data, FLIRT, which reduced
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considerably the time to extract clean and generate the data. We found low
to strong correlations in some possible predictors of stress that are worth
exploring for future research. In our experiment, students were exposed to an
engineering practice exam as a stressful situation or stimulus, also considered
reactivity. After the exam, a recovery time was provided so the student could
reset or go back to a baseline. As some studies suggest, reactivity is related
to stress (Vrijen et al., 2018), we used equations to estimate reactivity and
recovery values from the EDAmeasurements and used those values to explore
any meaningful correlation. Meaningful correlations or possible variables to
explore as predictors are area under the curve AUCi, which correlates with
Performance for analytical negatively, the normalized change of the mean
tonic values which correlates with questions answered by students, and also
with the mean phasic value at T3. Lastly, we developed several algorithms
among LDA, AB, and DT using the WESAD dataset and the FLIRT toolkit
obtaining comparable results between our test and the previous studies for
weighted scores. Future directions include applying these algorithms to our
dataset and exploring applications in real-time to predict stress situations
within real engineering education environments that ultimately lead us to
understand a bit better what affects students learning or performance in the
classroom.
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