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ABSTRACT

In this paper, we developed a remote breath pattern from a helmet-mounted thermal
sensor while providing real-time feedback from the head-up display on the helmet. We
use Lucas-Kanade Tracking and the Fast Fourier Transform to estimate and display a
subject’s breaths per minute and breathing waveform in an embedded systems envi-
ronment. In addition to respiration rate (RR), our visualization shows the waveform of
the subject’s breathing pattern, which provides real-time diagnostic information. Our
system was able to predict respiration rate with high accuracy and stability in all tri-
als of subjects wearing face masks, due to the heat-trapping effect of facial coverings.
In the unmasked cases, the error rates are higher than the masked cases, due to the
higher signal-to-noise ratio and other causes. In future work, we would like to focus
on unmasked RR detection to improve accuracy and robustness with better color map-
ping from the raw data to pixel colors, improve the tracking accuracy, and improve the
thermal resolution.
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INTRODUCTION

The ability to measure a person’s respiratory rate (RR) or breathing rate easily
and reliably is extremely important for attending to patients in emergency
response situations. Current methods for measuring breathing rate include
visual counting and the use of respiratory belts. However, these methods
prove to be impractical in the context of on-the-ground emergency response
by firefighters and EMS due to human error and equipment size. Conta-
ctless methods for measuring respiratory rate have been developed, but many
are also unsuitable for emergency response situations. For example, remote
photoplethysmography has been used to estimate respiratory rate, but the
sensors involved capture information from light reflected by the human body,
making the method unsuitable for the dark environments in which emergency
responders may attend to victims. On the other hand, infrared cameras can
be used to capture temperature information emitted naturally by the human
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body, making respiratory measurement via thermal imaging a possibly sim-
ple and robust approach in low-light conditions. This approach has been
explored by other researchers in controlled environments, but to the best of
our knowledge, it has not been applied to the specific context of emergency
response situations (e.g. live sensing and analyzing from the first responder’s
helmet).

LITERATURE REVIEW

Remote respiration analysis and estimation through thermography have been
a topic of great interest in recent years. In much of the literature, the problem
is decomposed into several subproblems in similar ways: first, there is the
problem of identifying some region of interest (ROI) on the body (e.g. the
area around the nose and mouth) whose temperature fluctuates as the sub-
ject breathes; second, there is the problem of tracking this region in space,
as the subject moves; and third, there is the problem of extracting and pro-
cessing information from this region to accurately and robustly predict the
respiration rate of the subject.

Identifying the ROI can be done manually, by selecting a pixel range in the
first frame of consideration (Cho et al. 2017). Identification can also be done
automatically. For example, automatic identification of the nostril region has
been accomplished by segmenting the face using Otsu’s method, considering
human anatomy, and applying Canny edge detection (Pereira et al. 2015).
Automatic ROI identification can however be difficult in situations where
the precise orientation of the face is not known apriori. Furthermore, classical
approaches to face detection, such as the Viola-Jones algorithm (Viola and
Jones, 2001), often operate under the assumption that the input video is in the
visible light spectrum; as has been noted, the low resolution of thermal images
and lower facial texture in them can hinder such algorithms (Tran et al. 2021).

Tracking the ROI involves predicting its new position in subsequent fra-
mes of the video after it has been initialized. As the subject moves their
head, the ROI must cover the same nostril region or be reset in the case
that it is completely lost. As seen in the literature, there are a number
of ways to go about this. It has been suggested to analyze a number of
previous frames to determine the location of the greatest thermal range
and update the ROI to this position (Prochiazka et al. 2017). Cho, et.
al. propose a new algorithm called Thermal Gradient Flow, which uses
the Median Flow algorithm to track chosen points in the nostril region of
the ROL

Estimating the RR typically amounts to extracting a predominant fre-
quency from the sampled time-domain data. Prochazka et al. sample the
average temperature value in the ROI at each frame of the video, pass the
data through a bandpass filter, and extract the BPM from its Discrete Fourier
Transform power spectrum. Pereira et al. used similar sampling and filtering
techniques but extracted BPM through Bruser et al.’s beat-to-beat detection
algorithm.
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Figure 1: Prototype of the AR Helmet.
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Figure 2: The respiratory rate detection process.

ARCHITECTURE OF SYSTEM AND PROCESS

In designing an approach to these three problems, we considered the com-
putational constraints of a real-time, mobile analysis solution. A thermal,
grayscale color-mapped video stream is captured by the camera and tran-
smitted to the processing board at a frame rate no greater than 9 Hz. Each
successive frame is read by the software, which extracts an RR estimate and
preprocessed waveform every 1 second. The RR estimate and waveform are
overlaid on the thermal video, updated at the same rate, and transmitted to
the display. Figure 1 depicts the AR helmet prototype, and Figure 2 illustrates
the signal analysis process.

The analysis software keeps track of the approximate position of the face
via tracking points and uses this information to update the position of the
ROI around the nostrils. The tracking points are initialized using Shi-Tomasi
corner detection (Shi, 1994) and updated using the Lucas-Kanade Tracking
algorithm (Lucas and Kanade, 1981). With each frame, a new thermographic
value is sampled from the thermal image by averaging the color-mapped gray-
scale values within the current ROI. The software maintains the time-domain
waveform of the last 12.5 seconds of values and discards the oldest sample
with each new frame. The waveform is then preprocessed via mean-centering
and linear regression. The result is zero-padded for the purpose of sinc inter-
polation and the Fast Fourier Transform is taken. The zero padding is chosen
to ensure a 0.25 BPM frequency-bin resolution in the interpolated Fsform.
Finally, the RR is estimated by choosing the frequency component with the
highest energy below the upper limit of human respiratory rate, according to
Eq. 1. The analysis software is implemented in C++ and uses the OpenCV
library for image processing.



4 Cai et al.

Before tracking ) Subjectaligned)
A ~

Breathing analysis) Tracking initated )

.

Figure 3: State transition diagram of the tracking and analysis procedure and associa-
ted visualizations projected to the display.

NOSIL TRACKING AND EXCEPTION HANDLING
Tracking Algorithm

Breathing data are collected as the fluctuating temperature value around the
subject’s nostril region. Identification of the nostril region is done manually:
the user passes button input to the program when the ROI covers the nose.
The moment that tracking is initiated, a larger region that we call the Region
of Tracking (ROT) is initialized over an area above the ROI, which inclu-
des the subject’s eyes, forehead, and bridge of the nose (see Figure 3). In this
way, the ROT encompasses a wider area of the face with more distinct featu-
res visible in the thermography. We identify up to 10 of these features using
the Shi-Tomasi corner detection algorithm (OpenCV, 2022). Then between
each frame, we update the position of these feature-tracking points using
the Lucas-Kanade optical flow tracking algorithm (OpenCV, 2022), and we
update the position of the ROI by the average displacement of the tracking
points.

Exception Handling

It is critical to consider the case in which the subject’s nostril region leaves
the ROI or the tracking of the ROI is lost. In the case that the subject being
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Figure 4: An example sampled waveform with its corresponding frequency
decomposition.

tracked leaves the frame of the video, the tracking program automatically
resets the ROI position and stops detecting the respiration rate (RR). If the
ROI becomes misaligned but is still within the frame, the user can manually
reset the tracking process.

SIGNAL PROCESSING FOR BREATHING RATE ESTIMATION

For every 12.5-second window of collected data, the data is preproces-
sed and analyzed to estimate the breathing rate and generate a breathing
pattern waveform. First, the data is detrended using linear regression and
mean-centering. Next, the data is zero-padded to interpolate the subsequ-
ent periodogram power spectral density estimate to a frequency resolution
of 0.25 BPM using the relation between signal length and frequency bin
resolution in the DFT (Eq. 1).

Wpin = fs / N (1)

The maximum-energy frequency component below 51 BPM is reported as
the breathing rate estimate, according to Eq. 2 and as seen in Figure 4.

RR = argmaxg.qw,|X(¢®)?, where v, = 51 BPM (2)

We do not consider preprocessing the sampled signal through a band-
pass filter, because doing so can mistake noisy frequency components in the
passband region for the respiratory rate in the case that the subject is not bre-
athing at all. We must not assume the person being monitored has a normal
respiratory rate.

EXPERIMENTAL DESIGN

The accuracy of the real-time RR prediction system was evaluated on 6 volun-
teer subjects from the Carnegie Mellon University community. Each volunteer
was the subject of 6 tests. All tests were performed with a tester who wore
and operated the AR helmet sitting across from the subject, as depicted in
Figure 5. The subjects were instructed to breathe normally while sitting at
distances of 1m, 0.5m, and 0.3m apart from the tester. The subjects were
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Figure 5: The lab test environment (left) and the thermographic display on HUD (right).

Table 1. Parameters tested for each subject.

Subject Facial Condition Subject Breathing Rate / Distance
Masked Normal / 1m Fast/ 1m Slow / 1m
Unmasked Normal / 1m Normal / 0.5m Normal / 0.3m

then also instructed to breathe quickly, normally, and slowly while wearing
a face mask. The tested parameters for each trial are summarized in Table 1.

We used two measurement methods for estimating a ground truth RR that
can be used when access to equipment found in a lab is restricted: pulse oxi-
metry that has a Respiratory Rate reading (RR) and manual counting. The
subjects wore a pulse oximeter on their finger capable of detecting respira-
tory rate, whose readings were sampled every 5 seconds. A second tester also
observed the subject and manually counted their breaths during each trial
period. Each trial period lasted 75 seconds, with the first 15 seconds rese-
rved for calibration of the pulse oximeter and the next 60 seconds for data
collection.

TEST RESULTS

In exploring the effectiveness of the proposed RR prediction system, we con-
sider an accurate prediction to have a low error as compared to the ground
truth. It is important to mention that the pulse oximeter used did not report
a respiratory rate for one of the six subjects across all 6 trials for that subject,
resulting in a total of 30 trials.

Overall, the predicted RR for masked subjects appeared to be more accu-
rate than the predicted RR for unmasked subjects. Compared to the real-time
pulse oximeter reading, the masked trials showed an average Root Mean
Squared Error (RMSE) of 6.01 BPM, while the unmasked trials showed an
average RMSE of 11.26 BPM. When compared to the ground truth esti-
mate from manual counting, the respective average RMSEs were 1.96 BPM
and 11.41 BPM. The average standard deviations of the predicted RR were
1.68 BPM in the masked trials and 9.69 BPM in the unmasked trials. These
results are summarized in Table 2. Tables 3 and 4 summarize the results for
the masked and unmasked trials when split on instructed respiration rate and
distance from the tester, respectively.
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Table 2. Average error rate and standard deviation of RR predictions (in BPM) with
subject masked and unmasked.

Metric Masked Unmasked, 45° Unmasked, 0°
(N=15) tilt (N = 15) tilt (N = 15)
Avg. MAE (pulse oximeter) 5.36 N/A 8.99
Avg. MAE (manual counting) 1.50 2.78 9.15
MAE SD (manual counting) 0.95 2.40 2.80

Table 3. Average error and standard deviation of RR predictions (in BPM) with subject
masked and breathing at different rates.

Metric Respiration Rate (masked)
Normal (N=5) Fast (N=5) Slow (N=5)

Avg. MAE (pulse oximeter) 3.12 8.29 4.66
Avg. MAE (manual counting) 1.37 1.40 1.74
MAE SD (manual counting) 0.82 0.67 1.25

Table 4. Average error and standard deviation of RR predictions (in BPM) with subject
unmasked and sitting at different distances from the tester.

Metric Distance (unmasked, 0° tilt)

1m (N=5) 0.5m (N=5) 0.3m (N=5)
Avg. MAE (pulse oximeter) 9.75 9.28 7.93
Avg. MAE (manual counting) 9.60 9.54 8.31
MAE SD (manual counting) 2.68 2.30 3.18

Figure 6 compares two trials, in which the same subject breathed at a
manually counted RR of 18 BPM while wearing and not wearing a mask. The
waveform from the masked trial shows very clear peaks, almost as though
the signal was passed through a low-pass filter. Its associated interpolated
Power Spectral Density plot also shows a clear peak at 15.52 BPM, near the
ground truth of 18 BPM. The corresponding waveform from the unmasked
trial appears to be contaminated by high-frequency noise, as evidenced by its
own frequency decomposition.

We found the Signal to Noise Ratios (SNR) in the sampled thermographic
signals, which is a colormap of the raw temperature data, is rather noisy,
which might contribute to the errors in estimating the breathing rate. It was
observed throughout these trials that when a subject wore a face mask, the
temperature fluctuations due to their breathing were far more pronounced
in the thermography versus when their nostrils were exposed to air, and the
heat expelled from the nose dissipated quickly. It appears that a face mask
effectively acts as an insulator of the hot air expelled during breathing, and
inherently filters and amplifies the temperature signal generated around the
nostrils by the subject breathing. This resulted in more accurate and more
stable RR estimates within the masked trials compared to the unmasked
trials.
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Figure 6: Masked trials produced signals with higher SNR, and provided a more
confident RR estimate.

Interestingly, we did not observe any difference in the accuracy or stability
of the RR estimate when varying distances in the unmasked trials. We expe-
cted that the accuracy would increase as the subject was closer to the thermal
camera. We assume that the signal is inherently too weak in this situation.

CONCLUSION

In this paper, we developed a remote breath pattern from a helmet-mounted
thermal sensor while providing real-time feedback from the head-up display
on the helmet. We use Lucas-Kanade Tracking and the Fast Fourier Tran-
sform to estimate and display a subject’s breaths per minute and breathing
waveform in an embedded systems environment. Our system was able to pre-
dict RR with high accuracy and stability in all trials of subjects wearing face
masks, due to the heat-trapping effect of facial coverings. In the unmasked
cases, the error rates are higher than the masked cases, due to the higher
signal-to-noise ratio and other causes. In future work, we would like to focus
on unmasked RR detection to improve accuracy and robustness with bet-
ter color mapping from the raw data to pixel colors, improve the tracking
accuracy, and improve the thermal resolution.
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