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ABSTRACT

The prevalence of stress and anxiety has increased dramatically in recent decades,
especially with the global COVID-19 pandemic. In parallel, effective ways of objectively
assessing and quantifying these conditions have continued to be explored. Affective
computing is one such technique that has gained popularity recently, using physiolo-
gical signals to interpret, and infer human emotion. Additionally, virtual reality (VR) is
a rapidly developing tool with promising advancements in the health sciences. Given
the emergence of new unobtrusive wearables and biosensors-instrumented VR head-
sets, the combined use of VR and affective computing has enabled the development of
new immersive applications to objectively evaluate stress and anxiety. In this paper,
we examine various affective computing methods that have been combined with VR
with the goal of quantitatively measuring stress and anxiety levels. Additionally, we
explore how affective computing has been used in the assessment of cybersickness.
In particular, we surveyed current VR studies and summarized the most common
physiological measurements used to characterize stress, anxiety, and cybersickness.
Methods monitoring heart rate, skin conductance, muscle movement, and brain acti-
vity are described. We highlight the current challenges and propose opportunities for
future research directions.
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INTRODUCTION

Affective computing refers to a computer’s ability to recognize, interpret
and infer human emotions, a skill that is a crucial aspect of human inte-
raction, communication, and even evolutionary survival (Poria et al., 2017,
p. 98). Given the complexity in the understanding of emotional manifesta-
tions through physiological and psychological signals, affective computing,
with its potential to simplify this process, is emerging at the forefront of
human behavioral research. Coupled with the vital role of affect in our
everyday functioning, researchers are capitalizing on using machine learning
to research psychopathology, learning, driver assistance, and so forth. This
survey aims to expound on the current affective computing devices used in

© 2022. Published by AHFE Open Access. All rights reserved. 53

https://doi.org/10.54941/ahfe1001474


54 Alemu et al.

virtual reality to assess various physiological signals and cybersickness. We
start by providing an overview of stress, anxiety, virtual reality, and cybersi-
ckness. We then elaborate on the physiological measures that were used in a
virtual reality setting in the documents surveyed for this paper. We explain
the measurements assessed, the devices used, their strengths and limitations.
Finally, we discuss some future possibilities in this domain that current and
future researchers can consider and implement.

BACKGROUND

Although stress has numerous definitions, it can be understood as body’s
non-specific response when a person is faced with a negative, uncontrolled
condition that results in arousal (Fink 2016, p. 4-5). For instance, an indi-
vidual may feel stress during an exam, as it is unpleasant and beyond their
immediate means to change. The wide range of what is considered stress can
be divided into categories of acute and chronic. Acute stress deals with recent
pressures, while chronic stress encompasses long standing demands (Greene,
Thapliyal and Caban-Holt 2016, p. 45). This survey, as with most studies,
will focus on the measurements surrounding acute stress. As it is easier to
elicit and observe, it is the choice of most experimenters in the field. Resea-
rchers have traditionally used questionnaires to measure stress and anxiety
such as the Perceived Stress Scale (PSS) and Stress Appraisal Measure (SAM)
(Andreou, 2011). Less subjective means, such as monitoring cortisol levels,
have also been utilized, but traditional techniques often require very intrusive
procedures to extract information (Greene, Thapliyal and Caban-Holt 2016,
p. 46). As such, the need for objective, wearable, and safe assessments may
be addressed by the physiological measurements of affective computing.

Virtual reality (VR) has existed for several decades, but recent advances
in computer graphics and head-mounted display (HMD) technologies have
revolutionized the way individuals interact with computer-simulated environ-
ments (Rangelova, Eckel and Andre, 2018). From games to infrastructure
project visualization, VR has been rising in popularity in countless sectors
(Linda et al., 2018). One such area of interest is the use of VR in health-
care. Methods such as exposure therapy have been shown to greatly improve
outcomes (Carl et al., 2019). Similar findings have been seen in the treatment
of anxiety and stress related disorders (Carl et al., 2019). Integrating affe-
ctive computing physical measurements with VR therapies can help improve
mental health procedures, as well as enable the real-time measurement of
biomarkers to quantitatively monitor intervention outcomes.

Despite its promising advancements, VR is still heavily limited by the phe-
nomenon of cybersickness. Cybersickness, also known as simulation sickness,
is a subset of motion sickness that occurs within simulated environments
(Ihemedu-Steinke et al., 2017). The biological basis surrounding the con-
dition is not well defined within the scientific community and is a central
point of research within its field (Miljković et al., 2019). The unpleasant
occurrence leaves many users of VR in discomfort and hinders the ability
of widespread engagement. As such, the means to accurately assess cybersi-
ckness is a primary goal of virtual environment innovation. Doing so allows
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for better management of the condition and increased quality of user expe-
rience. Although common measurement tools for cybersickness, such as the
Simulator Sickness Questionnaire (SSQ), provide insight into the experience
of VR, they are ultimately limited by their subjectivity. As such, more obje-
ctive approaches based on affective computing have been used in recent years
to gain a concrete understanding of the condition. Physiological measure-
ments can produce consistent results across VR users and can serve as an
anchor for further exploration into cybersickness.

RESULTS: PHYSIOLOGICAL MEASUREMENTS

Physiological measurements for affective computing involve two compo-
nents: assessment of physiological signals associated with the central-
autonomic activity and biochemical signals indicative of endocrine and
immune activity. Amongst the various methods used to assess each of these
two components, a few have been more prominent with VR. Brain activity,
heart rate, skin conductance, and other techniques will be explored in the
following sections.

Brain Activity

There are various ways to objectively measure and quantify brain activity.
Due to its affordability, and higher temporal resolution, electroencephalogra-
phy (EEG) is a preferred method of brain activity detection in VR experiments
and will be the focus of this paper. EEG is a technique that measures the vol-
tage variations from current flows within the neurons of the brain. EEG can
be used to recognize mental workload, attention, emotions, amongst other
mental states (Seo and Lee, 2010). The signals observed are commonly divi-
ded into five frequency bands, namely: delta (0.1–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta (13–30 Hz), and gamma (greater than 30 Hz). Based on the
different mental states associated with each frequency band, EEG can be used
to recognize stress and anxiety. Pre-processing is commonly performed to
remove noise and artifacts and bandpass filters from 4 - 45 Hz are commonly
used (Arya, Singh and Kumar, 2021). Despite its higher temporal resolution
advantage, EEG has a low spatial resolution and requires many electrodes
to be placed on the scalp. For example, EEG recordings for stress measure-
ment have been done using 128, 64, and 32 channels (Wang et al., 2019), but
ongoing work suggests that acceptable performance can be achieved with as
little as 5 channels (Parent et al., 2020).

EEG has also been frequently used as an assessment tool for cybersickness
studies. Looking into the setup, important patterns emerge. The number of
channels varied from as little as 5, to as many as 256 (Wang et al., 2019;
Lim et al., 2021). Not all studies made use of an HMD, but those that did
had various methods to maneuver EEG equipment around the gear. One
paper used a BioSemi EEG cap in order for the piece to fit with the VR
headset (Arafat, Ferdous and Quarles, 2018), while another chose a wire-
less EEG device: the Emotiv Epoc+ (Celikcan, 2019). The wireless option
provides less obstruction with the HMD, but also removes limits of simu-
lation motion of the participant (Celikcan, 2019). The studies that did not
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involve HMD used EEG caps as well, such as the HydroCel Geodesic Sen-
sor Net (Lim et al., 2021). In these works, however, the relationship between
SSQ trends and EEG has been weak. For example, in Lim et al.’s study (2021),
no statistical correlation was found between the tested EEG parameters and
SSQ scores and only a small relationship was found between the alpha band
in the temporal area and SSQ scores. Future work within cybersickness predi-
ction should focus on alternative feature representations beyond just simple
subband frequency powers.

Heart Activity

Heart activity is another useful method to measure stress, anxiety, and cyber-
sickness and metrics such as heart rate (HR) and heart rate variability (HRV)
have emerged as the most popular. The former deals with the average number
of beats in a given amount of time, while the latter deals with time differences
in between beats (Ludwig et al., 2021). Fluctuations of these measurements
are linked with the autonomous nervous system and correlate to certain con-
ditions. For example, an increase in heart rate has been linked to stress and
cybersickness, thus have been used in VR studies.

There are a few different methods to collect and interpret heart activity.
One of the most common is electrocardiography (ECG), which monitors the
excitation conduction of the heart. ECG is one of the most accurate ways to
assess heart activity, but few wearable devices exist and only recently has it
been integrated into a VR headset (Cassani et al., 2020). In the VR studies
that looked at stress and anxiety, heart rate was measured using ECG sensors
or with smartwatches/devices that rely on photoplethysmography (PPG). Ele-
ctrodes were placed on the body of the participant, either on the chest area,
or on the hands, legs or ankles. Some studies placed wireless straps on the
chest wherein the heart rate data was transmitted via Bluetooth (Kamińska
et al., 2020; Awada et al., 2021; Laforest et al., 2016; Poguntke, Wirth and
Gradl, 2019). This permitted greater mobility among the participants. In one
of the studies where researchers used a smartwatch to collect biodata, rese-
archers faced some errors in recording data (Borgard, Hashemi and Yang,
2018). They noted that since smartwatches are intended for personal use,
they might not be ideal for multi-person measurements which could com-
promise the data measurements. In cybersickness related VR studies, ECG
medical sensors and wrist-based electrodes have been used to measure HR
and HRV (Rangelova, Eckel and Andre, 2018; Yoshida, Kaneko and Yuda,
2020).

As mentioned above, other methods exist to measure heart activity, such
as blood volume pulse (BVP) measurement from PPG sensors. BVP measures
changes in vessel blood volume via changes in light absorption levels measu-
red with PPG (Rangelova et al., 2019). Devices are typically attached to the
tip of the ring finger with a cuff or velcro strap, or via a smart bracelet/watch
form factor (e.g., the Empatica E4 device or the Fitbit Alta HR) (Rangelova
et al., 2019). PPG sensors are usually less accurate than ECG but have been
utilized in several studies of stress and anxiety (Yadav et al., 2019; Nunna
et al., 2019, Zuniga Gonzalez, Richards and Bilgin, 2021; Crescentini et al.,
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2016). It is well recognized that PPG based systems can have some issues of
replicability and reproducibility, as the technology can be sensitive to skin
color, thickness, biobehavioral indices, and technological differences which
can influence heart rate measurements.

In turn, BVP used in cybersickness studies have shown to produce correla-
tions with SSQ scores. Its increased “wearability” compared to ECG systems
make it a useful technology to be used with VR (Rangelova et al., 2019). In
fact, one study showed that BVP sensors could measure heart activity that was
more sensitive to cybersickness symptoms than the SSQ questionnaire, thus
further motivating the use of BVP with VR (Preciado, Starrett and Ekstrom,
2020).

Skin Conductance

Skin conductance is known to be triggered in an unconscious manner to dif-
ferent emotional stimuli, as a natural reaction to changes in the sweat glands
of the skin. Sweating is controlled by the sympathetic nervous system and
high arousal states are known to increase skin conductance levels. Skin con-
ductance is measured via the galvanic skin response (GSR), also known as
electrodermal activity (EDA) (Wang et al., 2019). Changes in conductivity
can be useful in determining stress, anxiety, and cybersickness levels of an
individual. A higher GSR score is indicative of an increased stress response,
which is measured in the unit micro-Siemens (µS) (Arafat, Ferdous and Quar-
les, 2018). Due to its ability to evaluate such reactions, GSR has been featured
in several VR studies. Systems usually appear in wristband form factor, such
as the Empatica E4 device, or more commonly, by attaching two electrodes
to fingers in the non-dominant hand and applying a small current to allow
for conductance measurements to be made.

In the surveyed papers, GSR was commonly used to measure levels of stress
and anxiety in VR studies. Only one study employed a wrist mounted device
(Empatica E4) to measure EDA (Yadav et al., 2019). Others relied on fingers-
based sensors and relied on measures of skin conductance (Crescentini et al.,
2016), most commonly using the ProComp Infiniti device from Thought
Technology (Montreal, CA) (Martens et al., 2019). In cybersickness studies,
in turn, GSR has shown varied levels of success. In some studies, skin con-
ductance measurements showed some correspondence to SSQ reports (Wang
et al., 2019) and results could also be replicated with individuals with mul-
tiple sclerosis (Arafat, Ferdous and Quarles, 2018), whereas other studies
could not find any significant correlations (Rangelova, Eckel and Andre,
2018; Rangelova et al., 2019). This suggests that there is still ample room
to explore the benefits of measuring skin conductance for VR applications.

Muscle Movements

Electromyography (EMG) relies on surface electrodes that are placed on
certain muscles and measure electrical signals related to the muscle move-
ment (Luca, 2006). As humans tend to contract their muscles under stressful
conditions, most explored works relied on EMG sensors placed on the tra-
pezius muscles to measure responses to different stressors (Rasmussen et al.,
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2006; Pourmohammadi and Maleki, 2020). One study used EMG to detect
muscle co-contraction of agonist and antagonist muscles neighboring a joint
(Kamińska et al., 2020). The researchers wanted to explore balance function
and postural control as a function of anxiety. In another study, EMG was
used to measure startle responses in response to an acoustic white noise burst
while participants viewed combat-related stimuli (Norrholm et al., 2016). As
with other electrical based systems, EMG is also susceptible to head move-
ment and body movement artifacts, and thus requires signal pre-processing
to enhance the signals. Additionally, it is hard to determine the appropriate
sensitivity of the device because it depends on an individual’s muscle stru-
cture (Martens et al., 2019). On the other hand, EMG has not been as widely
used to assess cybersickness. One study looked at the use of electrogastro-
graphy (EGG) - gastric myoelectrical activity using electrodes placed on the
abdominal skin over the stomach - to detect nausea in participants; a focal
symptom of cybersickness (Miljković et al., 2019). It was found that VR did
indeed impact gastric systems, regardless of nausea onset, and that EGG mea-
sures correlated with simple sickness questionnaire ratings. As such, EGG has
potential to be a method of cybersickness evaluation but could be limited by
electrode placement and the fact that wearable solutions do not yet exist in
the marketplace.

Endocrinal Measures

The hypothalamic–pituitary–adrenal axis is known to react to stressful situa-
tions by increasing cortisol secretion in the body. In turn, cortisol is used as a
measure for stress in laboratory settings. In fact, it is considered a gold stan-
dard for physiological stress measurement (Nath, Thapliyal and Caban-Holt.,
2020). Cortisol is typically measured by saliva processing wherein saliva is
collected using a swab that the participant places under their tongue and
then transfers into a tube. In two of the studies surveyed, cortisol readings
were used to measure stress levels of participants (Diemer et al., 2016, Shiban
et al., 2016). On the other hand, cortisol might interact with hormones (such
as DHEA) or hormone metabolites (such as allopregnanolone), thus could
bias the readings and generate erroneous stress level correlates. Moreover,
while in VR it could be more interesting to have real-time access to the user’s
stress levels, thus allowing for e.g., virtual environment changes. Readings
based on cortisol do not allow for such real-time aspect, hence are seen as a
major drawback of the method.

DISCUSSION

Integration of wearables and affective computing with VR is an area of bur-
geoning interest, especially within the healthcare space. The surveyed papers
have looked at the use of different neuro-physiological signal monitoring
devices and their use in measuring stress, anxiety and cybersickness levels
when immersed in VR. It was found that across the many factors that contri-
buted to the methods, the wearability of the assessment tools was the most
important aspect in VR, hence motivating the development of new devices,
such as the instrumented iHMD proposed in (Cassani et al., 2020) or the new



Affective Computing for Stress, Anxiety and Cybersickness Detection in Virtual Reality 59

Galea system developed by openBCI (https://galea.co), where all the sensors
are embedded directly into the VR HMD. Notwithstanding, while weara-
bles allow for portable and real-time access to important neurophysiological
data, such systems are known to be more prone to artifacts, especially due to
movement. Papers that carefully integrated pre-processing and artifact remo-
val algorithms tended to show improved results. Future work should not
overlook sensor data quality issues and deploy state-of-the-art enhancement
algorithms. Lastly, some papers emphasized the reduced naturalness of inte-
racting with VR content when wearable devices were used, such as EMG/GSR
sensors attached to fingers and shoulders. Size, weight and comfort of these
devices were crucial for usability. Future work should pay special attention
to these issues, as reduced usability may result in increased stress levels that
are not necessarily due to the intervention per se, but to the comfort levels
of the setup. Such confounds are to be avoided, especially with healthcare
applications.

CONCLUSION

Surveying the current literature surrounding the objective assessment of
stress, anxiety, and cybersickness has revealed numerous ways that VR can
work in parallel with affective computing. This paper has summarized the
key findings from the papers, has described the key biosignal modalities used
and highlighted some key findings. The paper has also provided some sug-
gestions on how future work should focus on portability, quality assessment,
and usability to maximize the outcomes of VR-based healthcare interventi-
ons. It is hoped that this survey will help researchers working on VR and
affective computing to build next-generation applications.
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