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ABSTRACT

Human factors research is best accomplished when basic science theories, often
derived from studying non-expert populations, and applied principles, often derived
from studying expert populations, inform each other. Mechanistic cognitive theo-
ries gain when informed by practical applications, and operational implementations
are best optimized by understanding the basic nature of human operators. An inter-
play between research involving data from expert and non-expert populations holds
great promise, but is often thwarted by information from each side not flowing to the
other. The argument here is that both types of data are fundamentally important, and
explicit efforts should bring them together into unified and integrated research pro-
grams. Moreover, effectively understanding expert performance requires assessing
non-expert populations.
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INTRODUCTION

Realizing the benefits of human factors research requires basic science theory
and applied research in operational environments to work in tandem, each
informing the other (e.g., Treviño et al., 2021). On one hand, incorpora-
ting information from practical applications provides insight intomechanistic
theories about cognitive processing. On the other hand, the application of
human knowledge in specific implementations requires understanding the
nature of the human operators that will be using those very implemen-
tations. This interplay holds great promise, but is too often thwarted by
information from each side not flowing to the other. Basic science research-
ers are often reluctant to accept findings from complex environments and
from what is typically a relatively small number of highly-specialized par-
ticipants. Similarly, industry decision makers can be reluctant to believe in
the applicability of results from simplified testing environments using non-
expert research participants with non-operational stimuli. The argument we
put forward here is that both types of data are fundamentally important to
understanding expert performance, and explicit efforts should be made to
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Figure 1: (A) Depiction of a closed-loop research ecosystem to use expert and non-
expert participants, with examples for (B) radiology and (C) for military research.

bring them together into unified and integrated research programs.Moreover,
effectively understanding expert performance requires assessing non-expert
populations.

CLOSED-LOOPED ECOSYSTEM

It is often critically important to understand how operators (e.g., aviation
security officers, radiologists, military personnel) perform in their professi-
onal setting. Many professions have life-or-death consequences, making it
vital to examine exactly what factors affect performance. While technologi-
cal aids can potentially improve professional performance (e.g., the use of
computer-aided detection in radiology; Kunar, 2022; Lehman et al., 2015),
at the end of the day a human operator must act. Given the fundamental role
of the human in the process, extensive research across a range of fields (e.g.,
radiology, military operations, air traffic control, cytology) has explored a
breadth of factors that can improve, or hinder, operators’ success. However,
the majority of these research endeavors ultimately hit the same roadblock—
it is practically difficult to test specialized operators. Expert participants can
be hard to gain access to, have limited availability, and sometimes there just
are not enough of them to conduct the needed research. Beyond such practical
hurdles, it is also, arguably, theoretically limiting to solely assess a specialized,
expert population as it may obfuscate meaningful factors.

Given the potential limitations of solely assessing experts, non-expert
populations can provide amuch-needed resource. Specifically, it can be highly
useful to create a closed-loop ecosystem wherein an idea rooted in an applied
realm (e.g., radiologists are more likely to miss an abnormality if they just
found another abnormality) is explored with non-experts (e.g., undergradu-
ate students) to affordably and extensively explore a number of theoretical
and mechanistic possibilities (see Figure 1). Then, the most promising can-
didate outcomes can be brought back to the expert population for further
testing. With such a process, researchers can explore possible ideas with the
more accessible population and then only assess the specialized population
with vetted research paradigms and well-honed hypotheses.
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As an example of this closed-loop ecosystem, military researchers often
draw upon the wealth of basic research conducted with non-expert sam-
ples. Military goals can be informed by leveraging basic research to better
understand how complex mechanisms of attention operate and affect per-
formance. For example, prior military research has relied on data from
non-military personnel to examine scene information extraction, as well
as general situational awareness, to make recommendations for developing
new technologies such as augmented reality used in the field (e.g., Larkin
et al., 2020). To align this work with the proposed closed-loop ecosystem,
the next critical step would be to test these recommendations on an expert
population that would actually use such technologies in practice; in this
case, Soldiers. In short, the overarching goal is to use the research with
non-experts to narrow the scope of exploration and then test the most
promising results with the relevant experts to improve its applicability in
the field.

IMPORTANCE OF ASSESSING NON-EXPERTS

While such closed-looped ecosystem research practices offer a way to best
use available resources, the argument here is that it is necessary to assess
non-experts to fully understand expert performance. That is, even if rese-
archers have full access to a large number of experts, they still need
to test non-experts. Specifically, assessing non-experts allows for quantif-
ying fundamentally important factors, such as strategic versus perceptual
drivers of performance, or the time course of learning. Many of the
potential gains in the applied sphere come from selecting the best peo-
ple to train into becoming experts; without non-expert performance it is
impossible to know how to enact that selection process or to divorce the
effects of extensive practice from expertise with the specific operational
environment.

As an example of the benefits of assessing non-experts, consider the process
of employee recruitment. Factors such as spatial ability have been shown to
play a critical role in developing aptitude in a variety of STEM fields and
could have important implications for recruitment (e.g., Wai et al., 2009).
Non-experts, through not only their availability but specifically their lack of
training, provide researchers the ability to tease apart mechanisms of spatial
attention andworkingmemory in the visual system (Xu&Franconeri, 2015).
These results can inform not only which individuals should be targeted for
recruitment, but also what training efforts may serve to widen the potential
pool of applicants.

As another example, in the field of chemistry, experts have been shown
to not only employ spatial reasoning strategies, but also to heavily rely on
algorithmic problem solving which develops through experience (Stieff &
Raje, 2010). Accordingly, such strategies are unavailable to non-experts,
making non-experts great candidates to understand mechanistic accounts
of the development of such spatial abilities. These results show that only
through studying both expert and non-expert populations can researchers get
a clear picture of the skills needed to enter the field of chemistry, as well as
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Figure 2: Reproduction of data from Jackson et al. (2013). Orthodontists were more
accurate than non-experts (undergraduates) and experts from another field (aviation
security officers), while being slower than the non-experts but not the other expert
group.

those skills ultimately used after entry. This example is specific to chemistry,
but the logic can play out for any number of expert fields.

Similarly, studies that employ expert and non-expert comparisons have
provided insight into the generalizable advantage that experts with pro-
fessional training can have beyond their domain-specific tasks. In a study
comparing visual search performance between professional aviation secu-
rity officers to that of nonprofessional undergraduate students, the use of
a domain-general visual search task for both groups revealed fundamen-
tal differences in performance, potentially rooted in increased practice and
expertise, that benefited the professional searchers (Biggs et al., 2013). These
findings also revealed the generalizability of domain-specific training to
universal visual search tasks, highlighting the necessity of non-expert compa-
risons in studying the scope of learning and the decay rate of practice benefits
for those with professional training.

It can also be informative to not only study expert and non-expert par-
ticipants, but also multiple groups of experts from different domains. For
example, one study explored if orthodontists have heightened sensitivity
to facial symmetry (Jackson et al, 2013) given that orthodontists assess
facial symmetry as part of patient care, with asymmetries being signs of
potential health problems. Orthodontic residents, non-expert undergradu-
ate students, and professional aviation security officers all completed a
facial symmetry judgment task with both upright and inverted faces and
a non-facial symmetry judgment task with dot patterns. As reproduced
in Figure 2, the orthodontist participants were significantly more accu-
rate at both upright and inverted facial symmetry judgments compared
to the undergraduate students and the aviation security officers (Jack-
son et al., 2013). Critically, this most likely did not arise from a simple
speed-accuracy tradeoff or change in effort and motivation since both the
orthodontists and aviation security officers were significantly slower than
the undergraduate students. Likewise, there was no difference between the
groups for the non-facial symmetry judgment task. This study highlights
how insights can be gained into expert performance through targeted com-
parisons with other participant groups who do not have specific domain
knowledge.
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IMPLEMENTATION HURDLES

To actually accomplish the process suggested here—a closed-loop ecosy-
stem wherein a research question is explored cyclically with both expert and
non-expert populations—all relevant players of the research enterprise have
to be on board. Academic researchers must be willing and excited to engage
with expert populations and understand the intricacies of the mechanisms
in practice, and the practitioners must be open to learning from simplified
studies and providing insights to inform theories. Critically, these two camps
must be receptive at every stage of the process, including generating research
ideas, conducting the research, reviewing the generated products, and revi-
ewing grant submissions. If academic researchers are reluctant to put value
on applied work or if practitioners and applied researchers are reluctant to
accept findings from non-expert populations, then this system falls apart as
progress can be blocked by “gatekeepers” at any stage.

To illustrate the precariousness of the process and how it can be easily
derailed, consider a recent research endeavor from our team. In collaboration
with a radiologist, a research program was designed to address an important
issue in breast imaging—the impact of using 3D technology for breast cancer
detection (Adamo et al., 2018). For decades, the tool of choice for breast
imaging has been mammography—a 2D imaging technique (e.g., Bleyer &
Welch, 2012). However, the field is shifting towards using tomosynthesis—a
segmented 3D imaging technique. The key advantages of tomosynthesis are
that radiologists tend to make fewer false alarms (e.g., Durand et al., 2015;
Friedewald et al., 2014) and detect more cancers (e.g., Ciatto et al., 2013).
However, there is a major downside in that it takes significantly longer to
evaluate a patient with tomosynthesis than with mammography alone (e.g.,
Bernardi et al., 212, Dang et al., 2014). This added time is not merely an inco-
nvenience as it creates an implementation problem that has placed extreme
pressure on the workload of radiologists.

Our research team sought to understand what factors slow search in
tomosynthesis to identify ways to speed up the process while maintaining
the accuracy benefits (Adamo et al., 2018). The first step of the closed-loop
ecosystem (Figure 1) was identifying the real-world problem that practitio-
ners face (i.e., added time of conducting search in tomosynthesis), and the
second step was designing a protocol that could be used with both experts
and non-experts. This was successfully done, as a simplified research pro-
tocol was created that compared 2D and 3D search in both radiologists and
university students, and both populations demonstrated reduced false alarms,
increased target detections, and slower response times in 3D search compa-
red to 2D search (Adamo et al., 2018). The next step was to use the tool
with easy-to-access undergraduate students to assess a range of factors. The
most promising outcomes would then be tested in the more limited expert
population (radiologists). The timing was ideal as the National Cancer Insti-
tute put out a call for grant proposals that was well-aligned. At this stage of
this particular example, there were engaged academic and practitioner rese-
archers and a funding agency looking to support such work. However, the
grant panel of practitioners was not on board, producing comments such as
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“The use of simplified stimuli and unrealistic target probabilities might be
problematic for translating the results from the proposed laboratory resea-
rch to clinical practice” and “it is questionable whether results from novice
participants will bear direct relevance and be translatable to tomosynthesis in
radiologists.” Surely there were other aspects that affected funded decisions,
but such reviewer comments highlight how easily this precarious balance of
an academic-practitioner partnership can be disrupted.

It is also worth highlighting a practical hurdle that may arise within this
closed-loop system stemming from the opaque definition of expertise. Even
if publication and grant proposal reviewers agree on the need to assess both
expert and non-expert participants, the next step would be to gain con-
sensus on the criteria or definition of the samples. This taxonomy may
not be as straightforward as imagined. For example, a meta-analysis of
91 unique studies from sport psychology research (Swann et al., 2015)
found eight different categorical definitions for “elite athletes.” These gene-
rally involve sport-specific measures, quality or quantity of training or
experience, or attained level of competition (e.g. international or profes-
sional competition). Although the extreme positions of the nature versus
nurture debate in expertise are largely dismissed (Ackerman 2014), the
relationships between the previously mentioned metrics for expertise are
often tenuous. For example, the amount of time spent in deliberate pra-
ctice or high scores on laboratory performance metrics may never translate
to high enough ‘on-field’ performance to reach international or professio-
nal levels for a given individual. This disconnect may also contribute to
applied researchers and practitioners being reluctant to accept some basic
research methodologies. This example is obviously quite specific, but it
highlights the many layers of hurdles that stand in the way of effectively
combining expert and non-expert populations to both inform theories and
practice.

CONCLUSION

While there has been an, at times, adversarial relationship between research
practices that use expert versus non-expert participants, the current pro-
posal is that embracing both is vital for fully understanding the nature of
expert performance. Basic research often relies on non-expert populations
both because of the ease in data collection, and because the “non-expert” is
essential for understanding how human behavior develops and operates with-
out extensive training in application-specific tasks. However, if one goal in
understanding human behavior is to draw inferences on how an individual
would perform at a given task or make recommendations to aid operati-
ons or application development, without being tethered to some applied goal
or real-world applicability, basic research can lack purpose. On the applied
end of the research spectrum, however, it is easy to inadvertently get lost in
nuance or a highly-specialized space where, without basic research to map
out fundamental cognitive principles, one could study an expert group for
years without generating generalized results that will apply to the next group
of experts. The aim of this paper, therefore, is to illustrate how embracing
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both expert and non-expert participant research is essential, and especially
powerful when the two are explored collaboratively.
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