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ABSTRACT

The use of collaborative robots (cobots) in the industrial setting has grown and con-
tinues to expand globally, especially in the context of the smart factory. Mistrust and
stress results, as cobots don’t provide facial, auditory, and visual cues that workers
normally use to predict behavior. For quantification of mental stress, physiological,
behavioral and subjective measures are integrated, processed and analyzed in a smart
factory lab setting. The impact on the human workers as mental stress and fatigue con-
ditions are correlated with the task complexity, speed of work, length of collaborative
task and cobot payload etc. Multimodal functional neuroimaging was used to record
participants’ neural and cardiac activity, in addition to the standard subjective and
behavioral measures as they collaborated with robots in multitasking contexts. Preli-
minary results show that task complexity is positively correlated with beta and gamma
band power, left prefrontal cortex activation, and heart rate, while it is negatively
correlated with alpha band power during task performance.
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INTRODUCTION

The use of collaborative robots (cobots) in the industrial setting has grown
and continues to expand globally (Kaivo-Oja, 2020), especially in the context
of the smart factory. As a result, the aspects of occupational safety and health
prevention are expected to gain attention as the cobots do not work in isola-
tion (Wang et al., 2019) but rather share the space with humans.Mistrust and
stress results (Arai et al., 2010), as cobots don’t provide facial, auditory, and
visual cues that workers normally use to predict behavior. These factors may
generate anxiety and fear and can adversely influence human workers’ atti-
tudes towards and acceptance of cobots and technologies (Kopp et al., 2020).
The trust model for automation (French B, Duenser A, 2018) categorizes
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it in two types, i.e., initial trust before the actual scenario implementation
and the dynamic trust that is experienced during the interaction. This resea-
rch is focused on how improved mental health and safe working conditions
can be developed for the optimal use of collaborative robots in the dynamic
trust regime. This includes psychological safety, mental health andwell-being.
It is found that the quantification of stress data can lead to the identifi-
cation of an under-stress worker (Aghajani et al., 2017) and other mental
states, thus allowing improvements in worker well-being, efficiency and trust
on technology. This is supportive to further developing the mental health
risk prevention, relaxation and mitigation strategies, thereby building trust
and psychological safety, in different ways of interactions of worker and
robot.

For quantification of mental stress, physiological (Schaal et al., 2019), beh-
avioral (Brünken et al., 2004) and subjective (Demetriou Constantina, 2015)
measures are integrated, processed and analyzed in a smart factory lab setting.
The work is aimed to lead towards mentally and emotionally safe working
conditions in cobotic environment. The strategy to quantify stress can lead
to designing suitable collaborative spaces and jobs, under safe stress limits,
thereby, enhancing the motivation, performance and trust on the autono-
mous systems. The impact on the human workers as mental stress and fatigue
conditions are correlated with the task complexity, speed of work, length of
collaborative task and cobot payload etc. Brain physiological measures are
acquired to record participants’ neural activity and heart rate, in addition to
the standard subjective and behavioral measures. Experiments are designed
to perform an object pick-and-place task and co-working with robots. The
primary job/activity in the experiment is designed as a sorting activity based
on the stroop colour and word test that is a well-known neurophysiological
test. The secondary auditory task is added to the primary cobot stroop task
(Zakeri et al., 2021) that resembles the scenario for workers to deal with
multitasking and handle simultaneous demands like in the actual industrial
environment.

Non-invasive neuroimaging data acquisition and processing is used to find
the correlations of mental stress with respect to variations in work environ-
ment conditions. Mental states often correlate with the brain’s alpha and
beta rhythms and changes in haemoglobin concentrations which are collecti-
vely observable by a multimodal technique such as EEG+fNIRS (concurrent
electroencephalography and functional near-infrared spectroscopy). These
patterns are responsible for increasing the information content of the measu-
red signals and increase the accuracy of the decoding of mental states. This
research defines a strategy for experimental design and the initial acquired
patterns against the designed process tasks.

METHODOLOGY

The experiment is designed using collaborative robots and the data acqui-
sition system to measure the cerebral activity of the participant, while the
participant is working with cobot just like industrial worker remain busy
with their tasks in the automated environment.
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Figure 1: Human-robot collaboration: (a) Cobot Stroop task (b) Combination of 3 dif-
ferent factors: motion speed, payload capacity and task complexity at 2 levels of high
(H) and low (L).

Mental Stress Measurement

The main physiological measure in this experiment is EEG in which brain
electrical potential detects the neural activity from the voltage differences
between electrodes placed on the scalp. The other technique in combination
is fNIRS that detects changes in cerebral blood flow and related haemoglobin
concentration. Increase in Heart rate (HR) can also be affected by stress and
can be calculated from fNIRS signal. We analyse HR for each episode of
task and the rest, separately. These provide ways to quantify stress, cognitive
workload, sustained attention, vigilance, stress, drowsiness and effects on
verbal and spatial memory (Ayaz & Dehais, 2021).

Experimental Procedure

Based on the rationale, the experiments are designed using healthy adult
volunteers in one main trial to perform an object pick and place task and
co-working with robots (See Figure 1-a). Each experimental session is appro-
ximately designed to last for an hour, that includes the total time spent by
participants to perform the tasks.

The stroop task is a standard psychometric task that has been designed
as the main task for the participant in which the colour of the ink has to be
considered for decision rather than the printed name of the colour. Forty woo-
den cubes with the name of the colour printed with a non-matching colour
on each cube are provided for Stroop task. E.g., the label ‘red’ may be prin-
ted using colour green. It typically takes more time and cognitive effort to
identify the colour of the label. The cubes are placed in a marked corner of
the workspace. The Cobot Stroop task is designed in a collaborative manner
where the cobot picks up a cube and pass it to the participant. The participant
takes the cube from the cobot and place it in the marked area on the working
table based on the printed colour on the cubes. If the speed of participant in
performing the task is slower than the cobot, they may not be able to take the
next coming cube from the cobot. Therefore, the cube moved by the cobot
may be dropped on the table and counted as an error for participants’ per-
formance. The Cobot Stroop task has to be performed under different speeds
of cobot motion, cobot payload capacities, and task complexity from low to
high, where the combination of these factors leads to 8 different conditions
called episodes as shown in Fig. 1-b.
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Figure 2: Participants take the rest episode and fill NASA-TLX questionnaire after
completing each task episode.

In order to add complexity to the Cobot Stroop task (primary task), a
secondary task is added, simultaneously. In this case, the task complexity is
high. Participants perform the secondary task by pressing down on the foot
pedal, and in response, a series of beeps generated with duration ranged from
500 to 1000ms. The secondary task is an auditory task employed in this study
as a loading task to assess the effect of stress on the primary Cobot Stroop
task. It involves the operator’s ability in response to the auditory stimulus
while reaction time and detection rate will be recorded and considered as
behavioral measurements. This design is close to the industrial environment
scenario where sometimes human workers must deal with multitasking and
handle simultaneous demands. EEG+fNIRS data collection starts by perfor-
ming the secondary task alone for two minutes followed by performing the
Cobot Stroop task (episode 1, Figure1-b) for four minutes. Episode 1 is consi-
dered as a baseline where the cobot motion speed, payload capacity and task
complexity are set as low. A rest episode is then taken for two minutes (See
Figure 2). Participants in rest episode calmly sit on a chair for two minutes.
Following the first rest episode, participants perform the Cobot Stroop task
based on the identified episodes, one after another starting from episode 2.

Data Collection & Pre-processing

EEG data recorded from 19 scalp electrodes, based on the international 10-20
system, by TMSiMobita wireless data acquisition, at a sampling rate of 2000
Hz. The fNIRS data were collected at 10 Hz by Artinis Octamon. The eight
fNIRS channels with separation of 20-30 mm between transmitters-receiver
pairs cover a region between FP1-F3-F7 on the left and its symmetric counter-
part on the right. Initially datasets from 9 healthy volunteers were used in this
study. The NASA-TLX questionnaire is a standard form that estimates sub-
jective mental workload and stress assessment by considering six established
factors, i.e., mental demand, physical demand, temporal demand, performa-
nce, effort, and frustration. Each factor has a score ranged from 0 to 100 in
increments of 5. In this study, participants are asked to fill the NASATLX
questionnaire after completing each task episode, and the average of the six
factors are considered.

The raw EEG were pre-processed to remove artifacts and minimize non-
brain components of the signals using an ICA-based method (Zakeri et al.,
2020b). The data was also band-passed filtered at 0.16-40 Hz using a zero-
phase Hamming windowed-sinc FIR filter to reduce the slow drifts and high
frequency artefacts, and down-sampled to 200 Hz to reduce computational
and storage cost. Then, the relative frequency band-power (FBP) was calcu-
lated in distinct frequency bands such as delta (0.5–4 Hz), theta (4–8 Hz),
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alpha (8–12 Hz), four intervals ranging from low beta (12–16 Hz) to high
beta (24–28 Hz), and low gamma (28-32 Hz). fNIRS signals may contain
artifacts arising from: subject head motion that transiently affects optode
coupling, generating sharp deflections; muscle oxygenation, especially near
the temporalis muscle, in the form of high-amplitude excursions lasting
several seconds; average amplitude differences between channels due to dif-
ferent optical coupling and calibration which may remain stable during the
experiment; transient large deviations from blood perfusion changes due to
subject upper body motion; systemic heart beat artifact at about 1Hz and
Mayer waves at about 0.1 Hz and blood flow in superficial (non-cerebral)
tissue.

In order to mitigate these artifacts we implemented the following steps.
For each fNIRS channel the detector reading was band-pass filtered
(0.15-0.5 Hz), then converted into changes of oxy- and deoxy-hemoglobin
concentrations via the modified Beer-Lambert law. Filtering eliminated the
heartbeat as well as the slowest components. However, the time scale
of Mayer waves partly overlap with the expected time scale of cerebral
activity, hence were not eliminated. In order to mitigate large amplitude
artifacts (systemic such as Mayer waves and motion or muscle induced),
outliers in each channel were detected and excluded by using the criterion
of being more than three scaled median absolute deviations (MAD) away
from the median. In order to minimize subject-specific and optode cou-
pling related inter-channel differences, the hemoglobin time series within
each task episode was normalized by dividing it by the standard devi-
ation of the subsequent rest episode. In the case of the Baseline epi-
sode, normalization was with respect to the initial Rest episode. The
systematic components were expected to be globally present in the data.
Therefore, to further suppress the systematic components at every time
point, each channel’s signal was divided by the channel average. These
measures collectively addressed all the artifact types listed above, inclu-
ding skin blood flow. Further details can be found in our previous work
(Zakeri et al., 2020a, 2020b).

RESULTS & DISCUSSION

Figure 2 shows the relative frequency band power (FBP) that were averaged
over a number of participants in rest and task episodes. The FBP value for
each subject was averaged over all electrodes. The results indicate that alpha
activity is higher during rest episode in comparison with task episodes where
participants were performing a task and their mental workload was higher.
On the other hand, the high beta and gamma band powers are higher during
task performance than rest episode. This indicates the negative correlation
between alpha and mental workload, and positive correlation between beta
and mental workload. The highest beta and gamma band powers obtained
during the experimental episode 2 where payload and task complexity were
high, following by episodes 1, 3 and 4. Considering the most difficult episode
where payload, task complexity and robot motion speed were set to high, the
beta and gamma band powers increased compared to episodes 5, 6 and 7, but

https://localhost:31515/static/help/matlab/ref/isoutlier.html#bvolfgk
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Figure 3: Averaged relative frequency band power (FBP) for rest and experimental
episodes.

Figure 4: Prefrontal activation during task performance.

decreased in comparison with the first 4 episodes. The reason could be the
effect of learning during the experiment. The lowest beta and gamma powers
obtained during episode 7 where task complexity and payload were set to
low. Based on the FBP results there is a positive correlation between beta and
gamma activities and the stress induced by increasing the payload and task
complexity.

Activations averaged separately over the right and left prefrontal cortex
(PFC) are shown in Figure 3 for Baseline and each Task. The boxes indicate
the distribution of the activations over the subjects. The central mark in a box
indicates the subject median, and the bottom and top edges of the box are the
25th and 75th percentiles of the distribution over subjects. Results indicate
that Baseline activation was the lowest and the Task activation was generally
higher in the left PFC than on the right, this being particularly pronounced
in episodes 2, 3 and 8. We also calculated the activations corresponding to
the type of task loading. The average activation across all low-payload tasks
were calculated for the right PFC and this is shown as the first box on the
left in Figure 4.

As in the previous figure the central mark in the box shows the median
of the distribution over participants. This was repeated for the high-payload
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Figure 5: Prefrontal activation grouped according to the type of task load.

Figure 6: Heart rate in each experimental episode. Boxes indicate the distribution over
participants.

tasks and the result is shown as the second box from left in Figure 4. Com-
parison of these results suggest that the payload did not significantly affect
the activation. Similar calculations were performed for speed and comple-
xity, and separately for left PFC. Figure 4 suggests that there was an increase
in left PFC activation due to increased speed. The rightmost pair of values
in Figure 4 show that high complexity resulted in higher activation in the
left PFC.

The heart rate for each experimental episode is shown in Figure 5. The
figure indicates that the Rest and Task episodes had the lowest and highest
heart rates, with the Baseline occupying an intermediate range. In addition,
the median heart rate peaked at Task 2 and then decreased. Although the
difference between Rest and other episodes were significant there was no
statistically significant differences in HR between different types of task loa-
ding. Our results show that activation was on the whole greater in the left
PFC than on the right. This is consistent with the known dominance of the
left hemisphere in attention and overall movement organization and sele-
ction regardless of subject handedness (Serrien & Sovijärvi-Spapé, 2016).
Figure 3, 4 and 5 indicate that higher complexity increased FBP and left
PFC’s activation, while higher payload or speed may have slightly decrea-
sed it. In our experimental design, higher task complexity was induced by
having a secondary task (pedal response to auditory cue) performed in paral-
lel with the primary cobot-Stroop task. Thus, our results show that higher
PFC engagement and FBP were caused by multi-tasking. The drop in activa-
tion with increasing payload and speed suggested by Figure 3 and Figure 4
may be due to the fact that a participant may reach capacity and begin to be
overloaded, with a resulting decrement in concentration and PFC activation
(Aghajani et al., 2017).
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CONCLUSION

The aim of the present study is to assess mental stress imposed to human
worker during working with robots in smart factory industrial scenario. The
experiment was designed by integrating physiological, behavioral and sub-
jective measures to analyse mental stress in a smart factory lab setting. We
studied the effect of the imposed stress to the human based on task comple-
xity, robot’s payload capacity and motion speed at two levels of high and
low. Our initial findings show the general agreement between FBP and deox-
yhaemoglobin concentration changes metrics, and the positive correlation
between task complexity and mental workload and stress level, as well as the
positive correlation between HR and FBP changes during task and rest epi-
sodes. Our results suggest that noninvasive mobile functional neuroimaging
can provide discriminative metrics for quantifying mental stress caused by
cobots.
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