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ABSTRACT

For many years, metaheuristic algorithms have represented the state of the art in
manufacturing scheduling techniques, proving to be exceptionally reliable for optimi-
sing schedules. However, metaheuristics suffer from inherent weaknesses that inhibit
their ability to be applied to dynamic cloud manufacturing (CMfg) scheduling pro-
blems in practice. Thanks to the very recent and rapidly accelerating development
in deep reinforcement learning (DRL), a small sample of studies have described how
those approaches have thoroughly outperformed metaheuristic algorithms in dynamic
manufacturing scheduling problems, establishing a new state of the art. However, a
significant lag in maturity exists between the algorithms used in CMfg and state-of-the-
art DRL. This paper systematically reviews the CMfg scheduling literature published
between 2010 and 2020, summarises the development of deep reinforcement learning
in this context and offers valuable directions for future research.
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tion, Smart manufacturing

INTRODUCTION

Enabled by advancements in automated manufacturing technologies, cloud
computing, and the Internet of Things (IoT), Cloud Manufacturing (CMfg)
is a new, decentralised smart manufacturing paradigm. First proposed by
Li et al. (2010), CMfg transforms the resources and capabilities of a netw-
ork of manufacturers into on-demand manufacturing services to suit user
requirements.

In the decade since, researchers have proposed several frameworks, arch-
itectures, and operational models for CMfg (Wang and Xu, 2013, Liu et al.
2018). As a result, the core features required to execute CMfg have been
thoroughly explored, with multi-agent systems emerging as the dominant
architecture. In many cases, however, these frameworks overlook the com-
plex scheduling realities of implementing such networks in practice (Liu et al.
2018). Only recently has a technology emerged that demonstrates the poten-
tial to deliver a practical solution to CMfg scheduling – deep reinforcement
learning (DRL) (Dong et al. 2020, Liang et al. 2020, Zhu et al. 2020).
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Researchers have demonstrated the superiority of early DRL algorithms
compared to applications of state-of-the-art metaheuristics methods in CMfg
(Zhu, 2020). However, DRL is a field that is advancing rapidly with algori-
thms regularly setting new benchmarks in performance (Mnih et al. 2013,
Schulman et al. 2017, Barth-Maron et al. 2018, Hafner et al. 2020). The
resulting lag between advancements in DRL and the literature related to
CMfg scheduling presents a unique opportunity for future research. This
paper analyses and synthesises the research conducted on scheduling in CMfg
since the inception of the concept in 2010, describes the current state-of-
the-art and identifies gaps that researchers should investigate in the future.
The following sections outline the processes involved with CMfg scheduling,
introduce RL and how the field has developed, explore the limitations of
metaheuristic algorithms and merit of RL as a state-of-the-art technique for
dynamic CMfg scheduling, and offers directions for future research.

THE FOUR PHASES OF CMFG SCHEDULING

Scheduling in CMfg involves four discrete phases (see Figure 1). 1) Job
Decomposition (JD), wherein jobs which are submitted by users to the CMfg
system are broken down into the individual tasks to be executed. This prelimi-
nary step also defines the resources and capabilities which the CMfg network
must find to complete jobs. 2) Service Matching (SM) which is the process of
first determining whether resources and capabilities are suitable for tasks and
then matching the available CMfg services with tasks. 3) Service Composi-
tion, or the process of optimally combining potential services selected via the
matching process to complete jobs. 4) Task Scheduling (TS), which follows
from SC and is the process of determining when tasks should be executed.
(Liu et al. 2019).

Historically, manufacturing scheduling problems have predominantly been
considered as static problems (where completion times are known, and dis-
ruptions do not occur). This concession of practicality has largely been
determined by the NP-hard nature of manufacturing scheduling problems
as proven by Sotkov (1995). As a result, solutions to such problems are
derived by determining an approximation of the optimal schedule for all
work to be executed. Conversely, dynamic approaches consider scheduling
environments to be stochastic and rely on online scheduling policies where
decisions are made reactively to the dynamics of the environment. For a reali-
stic and robust representation of the CMfg scheduling problem, factors such
as processing times, machine availability, staff availability, and logistics times
must be stochastic. The core objective of this paper is to conduct a literature
review to investigate how applications of popular metaheuristics and recent
RL algorithms perform across the four CMfg scheduling phases in dynamic
formulations.

AN INTRODUCTION TO REINFORCEMENT LEARNING

Reinforcement learning (RL) is a framework for learning how to map situ-
ations to actions such that the action taken maximises a numerical reward
signal (Sutton and Barto, 2018). Using trial and error, RL algorithms learn
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Figure 1: Visualisation of the CMfg scheduling phases.

to estimate the value of decisions, enabling these techniques to be deployed
in stochastic problems. The structure of RL problems follows the Markov
Decision Process framework (Howard, 1960), defined by an agent, a state,
actions, and a reward signal (see Figure 3). The agent is the decision-maker
and observes a representation of the decision problem, represented by the
state. In each state, the agent selects an action, moves to the next state,
and receives a reward signal which indicates the quality of the chosen action
(Sutton and Barto, 2018).

RL algorithms use this framework to estimate the value of actions and/or
develop an agent’s policy. An agent’s policy is a mapping of states to pro-
babilities of selecting each possible action. Several approaches to algorithm
development have been devised, categorised by their focus on learning. In
value-based methods, the algorithm exclusively focuses on estimating the
expected value of actions and generally utilises a greedy policy, where the
action with the highest value is selected. Policy-based methods learn a policy
directly and use the reward signal to refine the policy iteratively. Actor-critic
methods also learn a policy directly (actor) but also estimate the value of
actions (critic) to create a target for the policy (Sutton and Barto, 2018).

Each of these methods may also employ models. Model-based algorithms
learn an independent understanding of the environment. The model is then
used to predict how an environment will respond to the agent’s actions, rather
than exclusively focussing on interacting directly with the environment to
learn a value function and/or policy (Sutton and Barto, 2018).

Tabular algorithms Q-learning (QL) (Watkins and Dayan, 1992) and
Policy Gradient (PG) (Sutton et al. 1999) remained the state-of-the-art in RL
up until the adoption of deep neural networks (DNNs) in 2013. DNNs are
universal, non-linear function approximators and have dramatically expan-
ded the capabilities of RL algorithms (Sutton and Barto, 2018). Mnih et al.
(2013) produced a ground-breaking algorithm Deep Q-Network (DQN),
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Table 1. Chronological summary of state-of-the-art RL algorithm development

Algorithm RL Method DNNs
Value-based Policy-based Actor-critic Model-based

Q-Learning
(Watkins 1989)

•

Policy Gradient
(Sutton et al. 1999)

•

DQN
(Mnih et al 2013)

• •

A3C
(Mnih et al. 2016)

• •

DDPG
(Lillicrap et al. 2016)

• •

PPO
(Schulman et al. 2017)

• •

SAC
(Haarnoja et al. 2018)

• •

D4PG
(Barth-Maron 2018)

• •

Dreamer
(Hafner et al. 2020

• • •

Figure 2: The agent-environment interaction in a Markov decision process.

Figure 3: Metaheuristics (Sholtz, 2019, Becker, 2013, Wang et al. 2014).

applying DNNs as a value function approximator to the QL algorithm. Seve-
ral RL algorithms have been developed after the introduction of DNNs (see
Table 1), with actor-critic architectures dominating the field, each setting new
benchmarks in overall performance and computation efficiency.



110 Chambers et al.

LITERATURE REVIEW METHODOLOGY

CMfg as a term has only recently been coined, limiting the overall breadth
of research available. On the Scopus database, a search for the keywords
‘cloud manufacturing’ and ‘scheduling’ produces only 163 documents (114
journal articles from 57 journals, and 49 conference papers). For this lite-
rature review a concept-centric approach to classifying works and critical
keywords was adopted (Webster and Watson, 2002), followed by a filte-
ring process to reduce the review to only the most relevant papers (Levy
and Ellis, 2006). Concept analysis revealed three important research stre-
ams formetaheuristics-based approaches, namely Genetic Algorithm, Particle
Swarm Optimisation and Ant Colony Optimisation. The set of papers to be
included in this review was filtered to only those that are concerned with
‘cloud manufacturing’, ‘genetic algorithms’, ‘particle swarm optimisation’,
‘ant colony optimisation’, and ‘reinforcement learning’. The resulting set of
papers were further condensed. Some papers, while appearing on the Sco-
pus database, were not accessible or were written in languages other than
English. Other papers did not publish the results of their algorithm imple-
mentations and were also excluded. The search and filtering methodology
outlined above produced 31 papers relevant to the review. The distribution
of their themes is as follows: ‘Genetic algorithm’ (13), ‘particle swarm opti-
misation’ (6), ‘reinforcement learning’ (5), ‘ant colony optimisation’ (4), and
both ‘genetic algorithm’ and ‘ant colony optimisation’ (3).

LITERATURE REVIEW RESULTS

The following sections introduce themetaheuristic andRL techniques applied
to CMfg scheduling phases in static and dynamic formulations, summarise
the development of RL algorithms, describe the current state-of-the-art and
identify critical research gaps.

Metaheuristics in CMfg

In response to the NP-hard nature of CMfg scheduling, metaheuristics have
long represented state-of-the-art CMfg scheduling techniques. In CMfg rese-
arch, three metaheuristics represent the core focus of the literature: Genetic
Algorithms (GA), Particle Swarm Optimisation (PSO) and Ant Colony Opti-
misation (ACO). These algorithms use processes inspired by biology to guide
a search of possible solutions. Chromosomes in GA to evolve solutions (Ree-
ves, 2003), flocking behaviour in PSO allows a population of solutions to
share their relative quality and the trajectory toward better solutions (Gass
and Fu 2013), and candidate solutions in ACO use pheromones to guide
future solutions (Dorigo and Stutzle, 2010) (see Figure 2). Metaheuristics
have demonstrated a strong ability to produce effective global solutions to
optimization problems in many domains (Sorensen and Glover, 2013). How-
ever, in a CMfg context, their practicality is limited. A key weakness of
metaheuristics is their need to thoroughly search a solution space to approxi-
mate an optimal solution. The large search spaces inherit to CMfg scheduling
require significant amounts of computation time before a global solution can
be found (Cao et al. 2016, Li, Zhang and Ren, 2017). In response, several
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Table 2. Summary of applications of metaheuristics to CMfg scheduling.

CMfg process Problem
JD SM SC TS SM + SC SM + SC + TS SC + TS Static Dynamic

Papers 1 0 12 7 2 1 4 26 1

Job Decomposition (JD) Service Matching (SM) Service Composition (SC) Task Scheduling (TS).

CMfg researchers have developed techniques to modify metaheuristics and
limit the search space (Ding et al. 2019, Ghomi et al. 2019). However, even
in static conditions, metaheuristics still struggle to produce solutions with
the computational efficiency necessary when reacting to disturbances in a
production scale CMfg network (Liu et al. 2019).

In turn, a significant research gap has emerged, as research conducted on
scheduling in CMfg is almost exclusively conducted with static problem for-
mulations where machine processing times do not vary, a full set of jobs is
known in advance, and jobs do not suffer from interruptions. Manufacturers
in practice do not operate in static conditions; instead, their circumstances
are dynamic (Qu, Jie and Shivani, 2016). The dynamic nature of practical
CMfg scheduling problems is therefore incompatible with state-of-the-art sta-
tic solutions. Only one paper from the literature search considers dynamic
conditions but requires up to 12.5 minutes to create a new schedule, with a
new schedule required at any point where production deviates from the ori-
ginal solution (Zhang et al. 2019). This processing time is infeasible when
solving dynamic, production scale scheduling problems in real-time where
deviations may take place multiple times per minute (Park et al. 2020).

A second gap has also emerged as metaheuristics-based research in CMfg
scheduling is predominantly focussed on individual phases of the CMfg sche-
duling process (see Table 2). A comprehensive literature review revealed only
seven examples of researchers attempting to produce solutions that integrate
multiple phases of the CMfg scheduling process.

Reinforcement Learning in CMfg

Very few researchers have investigated RL algorithms in CMfg. However,
their results, particularly after the adoption of deep learning techniques, sug-
gest that an exciting field is emerging. As highlighted in Table 3, researchers
have only recently begun to apply algorithms from RL to CMfg scheduling.
Of notable interest is the lag between the publication of the RL algorithms
and the publication of their application to CMfg scheduling. Results from
CMfg research are encouraging, though, with three of the five studies succes-
sfully finding solutions to dynamic scheduling. The state-of-the-art in RL
has moved far beyond the DQN and PG algorithms implemented in papers
published in 2020. However, these early algorithms have established a new
state-of-the-art in CMfg, most notably in the example of SHARER (Zhu et al.
2020), where both GA and PSO are thoroughly outmatched. SHARER was
able to achieve 40% greater resource utilisation and 30% shorter completion
times. These results were achieved by modifying a PG algorithm which was
first proposed at the turn of the millennium. These results beg the question:
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Table 3. Applications of reinforcement learning in CMfg scheduling.

Paper CMfg process Problem RL
JD SM SC TS Static Dynamic Algorithm

Li et al. 2019 • • • QL
Chen et al. 2019 • • PG
Dong et al. 2020 • • DQN
Liang et al. 2020 • • DQN
Zhu et al. 2020 • • PG + DNN

what kind of performance gains may be found through other, more mature
actor-critic RL algorithms?

DISCUSSION AND CONCLUSION

To summarise, this literature review has revealed three critical gaps in the
literature with each offering valuable opportunities for future research:

• Very few researchers have considered dynamic CMfg scheduling problems,
limiting the effectiveness of their solutions in real-world applications.

• DRL techniques have demonstrated an ability to outperform metaheu-
ristics in CMfg scheduling, both in solution quality and computational
efficiency. However, a significant lag exists between the state-of-the-arts
in CMfg and DRL with no applications of actor-critic or model-based
architectures in CMfg.

• Integrated approaches to SC and TS have not been thoroughly explored in
the literature, with only 6 examples found of such a problem formulation
(5 using metaheuristics and 1 using RL)

In the decade since its inception, Cloud manufacturing (CMfg) has attra-
cted a significant and growing amount of research attention with well-
established scheduling functions and processes. However, researchers investi-
gating the realities of optimally scheduling such a complex, dynamic, distri-
buted physical network are yet to produce solutions capable of executing
these operating models in practice.

Metaheuristic methods excelled at finding global solutions to optimisation
problems in many fields. CMfg researchers who have adopted metaheuri-
stics have improved the efficiency and performance of their solutions, albeit
heavily skewed towards the service composition function. Applying these
approaches to CMfg practice, however, is infeasible, due to the computational
cost of rescheduling when network dynamics inevitably demand it.

CMfg researchers have also focussed intently on breaking the CMfg pro-
cess into manageable steps, aiming to produce solutions to parts of the
scheduling problem. This focus has resulted in siloed solutions that produce
results in experiments but lack the ability to integrate with approaches in
other steps. Segmentation of the problem has also left elements of the CMfg
process underserved, limiting the potential of future implementations. Future
research that focuses on integrating scheduling processes is needed.
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The small sample of RL-based CMfg papers available is a notable limi-
tation of this review, expanding the search to neighbouring field should be
considered.

Developments in reinforcement learning have offered new and exciting
opportunities to CMfg scheduling researchers. Algorithms have been deve-
loped that are capable of decision making across a large variety of tasks
with excellent computational efficiency. In 2020, 3 different papers have
shown the advantage that DRL algorithms have over metaheuristics in CMfg
scheduling. The rate of improvement in DRL is so dramatic that the appro-
aches applied to scheduling have been surpassed by many new benchmarks
in performance, achieving efficiency gains of several orders of magnitude. A
significant lag exists between state-of-the-art CMfg scheduling methods and
state-of-the-art RL algorithms. The application of more mature RL algori-
thms to the CMfg scheduling problem is a clear and vital area for future
research.
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