
Human Factors in Accessibility and Assistive Technology, Vol. 37, 2022, 45–52

https://doi.org/10.54941/ahfe1001641

Verifying Screen Reader Accessibility of
Apps Developed Using Google Flutter
Alireza Darvishy

Zurich University of Applied Sciences 8400 Winterthur, Switzerland

ABSTRACT

This paper presents the results of a study to verify whether the Google UI framew-
ork Flutter can create accessible apps for iOS and Android platforms simultaneously.
Flutter provides mechanisms such as semantic classes to optimise accessibility during
app development. Optimising accessibility for mobile apps and especially for screen
readers is a major challenge for many app developers. One key reason for this is that
optimisations should ideally always be made for both Apple and Android. A possible
solution is offered by the UI framework Flutter, which aims to enable development in
only one codebase. This means that accessibility optimisations made in the Flutter
codebase should take effect in both Apple and Android platforms simultaneously as
well as with their respective screen readers, so that users are provided with a consi-
stent and accessible user experience, regardless of the platform chosen. The purpose
of this study was to test this hypothesis. To this end, a sample app was developed
using Flutter and a usability test was conducted with six visually impaired screen rea-
der users. Based on the initial test results, the app was then optimised in terms of
accessibility using Flutter’s semantics classes, and then tested and evaluated again
with the same test group. The results showed that some user interface elements were
still not accessible. In order to overcome these accessibility issues, workarounds such
as writing additional code for each specific platform were implemented, before a final
usability test showed that the sample app was fully accessible.

Keywords: Google flutter, Accessibility, Visual impairment, Screen reader, Accessible mobile

INTRODUCTION

More than one billion people worldwide are affected by a disability. This
number represents approximately 15% of all humanity, as stated by the
World Bank on the International Day of Persons with Disabilities, Decem-
ber 3rd, 2019 (Fu et al., 2019). Nevertheless, accessibility is often lacking in
many applications.

Among mobile apps in particular, accessibility via so-called “screen rea-
ders” is essential for all visually impaired and blind users, which according
to statistics from the World Health Organization were estimated at 285 mil-
lion in 2010 (Pascolini and Mariotti, 2012). A WebAIM’s 2019 User Survey,
which surveyed 1224 people with disabilities, revealed that 87.6% of respon-
dents used a screen reader, of which 94.5% were either blind (76.0%) or
visually impaired (18.5%).

© 2022. Published by AHFE Open Access. All rights reserved. 45

https://doi.org/10.54941/ahfe1001641

46 Darvishy

The two most commonly used mobile screen readers are VoiceOver for
Apple (71.2%) and TalkBack for Android (33.0%) (WebAIM,2017). For app
developers, optimising accessibility for both platforms often requires signifi-
cant time and financial resources, which is one reason that accessibility on
mobile apps is often insufficient. One possible solution is the open-source
UI framework Flutter developed by Google, which is used as a so-called
“hybrid” for Android and iOS app development. The goal in this case would
be accessibility optimisations that simultaneously take effect on both plat-
forms and their native screen readers, such that users are offered a consistent
and user-friendly experience, regardless of the chosen platform. The feasi-
bility of this goal was tested using a sample optimisation of an application
developed in Flutter. Through this study, the possibilities and limitations of
Flutter for accessible optimisation in app development could be examined
and evaluated.

METHODS

The study was conducted in three steps. The first step was the development
of a sample application using Flutter for iOS and Android. The sample app
was initially developed in such a way that it was not specially optimised for
accessibility. This made it possible for the screen reader test group to identify
and analyse potential accessibility issues in the standard app elements before
optimisation. The second step was to optimise the app’s accessibility as much
as possible for both platforms. For this purpose, the Semantics class was used,
which is an integrated class in Flutter that enables the developer to give a
meaning to UI elements so that they can be interpreted by screen readers and
read out in a meaningful way (Flutter Code 1, 2019). Finally, the app was
tested again among the same test group after optimisation.

Application

Initial Development
The sample application to be tested was created using the CodeLabs “Build
a Cupertino app with Flutter” provided by Google Developers (Zakhour and
Morgan, 2021). This made it possible to quickly and efficiently develop sam-
ple application that represents a realistic mock-up of an online shopping cart
and has enough testable, different UI elements. The simple shop app consists
of three tabs: Products, Search and Cart. The Products tab displays the store,
which is equipped with a selection of available products including their name,
price, image and a floating action button to add the product to the shopping
cart (Figure 1, left). The Search Tab offers the user the possibility to search
for a specific product in this list (Figure 1, centre). The Cart tab shows the
final shopping cart. Here the user can enter his name, e-mail address, location
and delivery time. Furthermore, the cart tab gives the user an overview of all
products added to the shopping cart as well as the total price including taxes.

Usability Testing
To test the app, several tasks were developed in which the test persons had to
perform certain actions using a screen reader. This ensured that all existing UI

Verifying Screen Reader Accessibility of Apps Developed Using Google Flutter 47

elements were tested for their accessibility. The execution of these tasks was
documented in real time so that the test persons could give direct feedback
on which UI elements and functions should be supplemented and adapted.
Based on this feedback, the app was optimised in the second step with the
help of the actions presented by Flutter in the Optimisation chapter, and then
tested again with the same tasks and the same test group. The following tasks
were defined for the following UI elements:

• Product Item: Add the fourth product item in the product list on the Pro-
ducts tab to the shopping cart twice. Then add the first product item to
the basket once.

• Search Field: Search in Search Field in the Search Tab for the product
“Vagabond sack” and add it to the shopping cart.

• Input Text Fields: Add the input text fields Name, Email and Location on
the Cart tab.

• Date Picker: Use the Date Picker on the Cart tab to select the date, which
is one week from today.

• Shopping Cart Item: Check in the Shopping Cart List on the Cart Tab if
all previously selected products are present and find out what the total of
all products is.

Optimisation

Based on the initial usability tests, the optimisation of the UI elements with
regards to accessibility included the following actions:

1. Adaptation of the hints
2. Addition of a feedback after the activation of an element
3. Replacing elements that do not fulfill essential basic functions of the

screen reader.
4. Exclusion of elements that are merely decorative
5. Adding additional semantic texts for a better understanding of the app.
6. Improving reading flow by adapting the semantic text.

These optimisations are discussed in more detail in the subchapters below.
The focus is on the problematic, complex optimisations for which worka-
rounds had to be found. These are presented at the beginning in subchapters
2.2.1 - 2.2.3. This is followed in chapters 2.2.4 - 2.2.6 by the simpler
optimisations that could be carried out without problems.

Adaptation of the Hints
By customising the hints, the screen reader should provide users with more
detailed information about what will happen when an item is activated. For
example, when selecting a product item, the screen reader should tell users
that the item would be added to the shopping cart if activated. Using the
Flutter callback functions onTapHint and onLongPressHint, for example, the
standard sentence “Double tap to activate” could be replaced with the more
user-friendly sentence “Double tap to add to cart”. However, although these
callback functions successfully override the default hints on Android, they
are ignored on iOS. This is described in the Flutter documentation of the

48 Darvishy

SemanticsHintOverrides class (Flutter Code 2, 2019). To solve this problem,
the hint property of the Semantics class was used (Flutter Code 3, 2019),
which, like the onTapHint function, allows the default hint to be overridden.
Here too, there are differences in the interpretation of the flutter code if the
selected element is an activatable UI element, as in the given example. For
example, if the string passed for the hint is “Double tap to add to cart”, iOS
only reads out the passed string as a hint. Android, on the other hand, adds
the standard phrase “Double tap to activate” in addition to the string passed.
Thus, instead of “Double tap to add to cart”, the Android screen reader
reads out the sentence “Double tap to add to cart, Double tap to activate”.
However, since this standard sentence should be overwritten with the more
detailed sentence, the hint property for Android was unusable in the sample
app. As a workaround, different behaviours had to be defined in the flutter
code for Android and iOS. The onTapHint callback function was used for
Android, while the hint property was defined as an alternative for iOS. Here,
an additional if-else statement had to be used to distinguish which platform
is used, so that the hint property can be deactivated when using Android and
the onTapHint function when using iOS.When adapting the hints, it became
clear that for such optimisations it is necessary to distinguish between the
two platforms and to define separate behaviours in order to enable the best
possible accessibility.

Adding Feedback After Activating a UI Element
Adding feedback after activating a UI element allows screen reader users to
update their mental map of the screen so that they are aware of changes on
the screen and in the app. Since the feedback on adding and removing a pro-
duct item to or from the shopping cart was missing in the sample app, this
had to be added according to the Accessibility Guidelines. For this purpose,
the announce function of the SemanticsService class was used (Flutter Code
4, 2019), which returns a semantic announcement as feedback on a UI state
change. Here, too, a similar problem as with the adaptation of the hints could
be observed. The SemanticsService class, which accesses the platform-specific
accessibility services, is interpreted differently by VoiceOver than by Talk-
Back. While iOS retains its own specific behaviour and reads out the entire
semantic of the element, Android lets itself be overwritten with the passed
string message as announcement and reads it out when the element is activa-
ted. As a result, both platforms react differently, despite the same codebase,
so that a consistent user experience between the two platforms is impaired.

Replacing Elements That Do Not Fulfill Essential Basic Functions
of the Screen Reader
In addition to the problems with hints and adding feedback, the interviews
revealed that basic UI elements such as TextFields have various problems for
iOS. For example, the function to switch between letters by swiping up and
down, as known from the native Apple UITextViews, is missing. In addition,
the focus does not return to the TextField after the keyboard has ended but
remains at the point where the keyboard ended. These inconsistencies with
the usual behaviour caused problems for the interviewees in operating and

Verifying Screen Reader Accessibility of Apps Developed Using Google Flutter 49

orienting themselves in the app. In order to solve this problem, an external
package was installed that addresses exactly this issue and recreates a native
UITextView in Flutter (Leung et al., 2020). By using this package and the
UITextView, the missing, essential basic functions of the TextFields on iOS
could be added. Nevertheless, a distinction had to be made between the plat-
forms and the desired behaviours, as the package only supports iOS and the
Flutter TextField had to be implemented for Android.

Exclude Exclusively Decorative Elements
Excluding exclusively decorative elements from screen readers is important
for both navigation and usability. For example, elements without meaning
and functionality should be ignored by the screen reader and thus not be
selectable. In addition, only content should be read aloud that helps screen
reader users to operate and find their way around the app. This requirement is
often not met by default and must be optimised. This could also be observed
in the sample app, as the purely decorative product images are read out by
the screen reader as “Image”: “Vagabond sack, $240, 2 x $120, Image”. To
prevent this, the screen reader had to be explicitly told in the code that these
elements should be excluded from the semantics. The ExcludeSemantics class
could be used for this (Flutter Code 5, 2019). This is recognised and correctly
interpreted by both screen readers without any problems.

Adding Additional Semantic Texts for a Better Understanding of the App
In certain cases, given information that is understandable in the user interface
due to its grouping, colour or typography may be too imprecise for screen
reader users. The same applies to special characters and abbreviations, which
can be read out incomprehensibly by screen readers. Therefore, in these cases,
an alternative, additional semantic must be defined for better understanding
of the app. In the previous example with the product item, the character “x”
is used as a multiplication sign.

Even if the special character is interpreted correctly in the user interface,
the two screen readers do not recognise it as “times” but read it out as the
normal character “x”. Therefore, an alternative text must be defined for the
screen reader, which communicates the information in a user-friendly, under-
standable way. To solve this problem, the semanticsLabel property of the
Flutter Text element was used (Flutter Code 6, 2019). Using this, the ori-
ginal semantic “Vagabond sack, $240, 2 x $120” could be replaced with
the semantic “Vagabond sack, $240, two times added to cart for 120$.” As
a result, the original text could be retained in the user interface, while an
alternative text optimised for screen reader users was defined.

Improving the Flow of Reading by Adapting the Semantic Text
In addition to the problem that special characters and abbreviations are read
out unintelligibly, there is also the problem that coherent text elements, which
are, for example, only separated by paragraphs, are read out as one coherent
text without reading pauses. This could also be observed in the sample app
in Cart Tab with the overall price text. Despite the visually clear breaks, the
entire text is interpreted and read out as a coherent text: “Shipping $21.00

50 Darvishy

Tax $10.32 Total $203.32”. However, it is common in the user interface that
individual words and information, such as prices, functions or categories, are
only separated by breaks and not by dots or commas. Thus, the user interface
was not changed here either, but only supplemented by an alternative seman-
tic for the screen reader, which was defined by means of the semanticLabel
property. In the alternative semantic, punctuation marks such as dots could
thus be built in without any problems, allowing the desired reading pauses
between the individual text breaks: “Shipping $21.00. [reading pause] Tax
$10.32. [reading pause] Total $203.32. [reading pause]”.

RESULTS

Initial Useability Tests

During the execution of the tasks in the non-optimised app, several accessibi-
lity issues were identified. For example, it was found that inactive, exclusively
visual UI elements such as the product image are read out as “image”. Also,
essential elements like the Flutter TextField work differently than the native
EditText elements on Android or the UITextField elements on iOS. Although
all of these TextFields fulfill the main function of recording the text in the
form of a string and displaying it in a text box or input field, important basic
functionalities such as switching between letters in the TextField implemented
by the Flutter are not recognised by VoiceOver. Other problems such as mis-
sing or too imprecise information about what should happen before or after
activating a UI element were also described by the test group. The results of
the testing showed that the sample app and its non-optimised, standard UI
elements must be optimised in order to comply with the Accessibility Gui-
delines of Android (Android Developers, 2021) and iOS (Apple Developers,
2021) to be met.

Useability Tests After Optimisation

After accessibility optimisation was carried out, the app was tested again
by the same test group and with the same tasks. All test persons noticed a
clear improvement in accessibility on both platforms and confirmed on both
platforms that the implemented optimisation steps were successful.

In particular, optimisations of critical elements that did not function pro-
perly before, such as the TextFields in iOS, were perceived as extremely
positive. Other optimisations, such as the addition of hints, feedback and
more comprehensible semantic texts, also improved accessibility and were
significant according to the interview survey.

CONCLUSION

In summary, it was found that Flutter offers developers several possibilities
to simultaneously optimise the app for both platforms in terms of screen
reader accessibility. One of the most important possibilities is the semantics
class. Using this, simple but effective optimisations, such as the exclusion of
purely decorative elements or the addition of labels, reading pauses or alter-
native texts, could be implemented quickly and easily. For more complex

Verifying Screen Reader Accessibility of Apps Developed Using Google Flutter 51

optimisations, such as overwriting hints or defining individual feedbacks for
interactive UI elements, it was observed that the two platforms and their
respective screen readers interpreted the codebase differently. Complex wor-
karounds were necessary to deal with these differences. Among other things,
each platform had to be queried in the Flutter codebase individually in order
to fix the respective app behaviour with separate code snippets. It also tur-
ned out that basic UI elements, such as the Flutter TextFields, are interpreted
differently by the two screen readers and do not offer essential basic functi-
onalities that are crucial for screen reader accessibility. In this respect, it is
up to the developers of Flutter to add these functionalities in the future. To
conclude, on the one hand, the sample app could be partially optimised using
only one codebase, which eliminates the need for two development teams for
iOS and Android and saves on budget and resources. But on the other hand,
several complex workarounds and platform-specific adaptations were neces-
sary to achieve full accessibility. Thus, if the goal is to generate an accessible
app using Flutter for both platforms without much effort, this is not possible
at the time this study was conducted.

REFERENCES
Android Developers (2021). “Android Accessibility Guidelines: Make apps more

accessible” (Online). Available: https://developer.android.com/guide/topics/ui/ac
cessibility/apps (accessed: Mar. 31 2021).

Apple Developers (2021). “Human Interface Guidelines: Accessibility” (Online).
Available: https://developer.apple.com/design/human-interface-guidelines/access
ibility/overview/introduction/ (accessed: Mar. 31 2021).

Flutter Code 1 (2019). Dart API - widgets library - Semantics class (Online). Availa-
ble: https://api.flutter.dev/flutter/widgets/Semantics-class.html (accessed: Mar. 8
2021).

Flutter Code 2 (2019). Dart API - semantics library – SemanticsHintOverrides Class
(Online). Available: https://api.flutter.dev/flutter/semantics/SemanticsHintOverr
ides-class.html (accessed: Mar. 31 2021).

Flutter Code 3 (2019). Dart API - semantics library - SemanticsConfiguration class
- hint property (Online). Available: https://api.flutter.dev/flutter/
semantics/SemanticsConfiguration/hint.html?web=1&wdLOR=c84BF2E97-
DD26-4195-BA0A-BF1E64848AE6 (accessed: Mar. 31 2021).

Flutter Code 4 (2019). Dart API - semantics library - SemanticsService class (Online).
Available: https://api.flutter.dev/flutter/semantics/SemanticsService-class.html?
web=1&wdLOR=cD7EF0364-486D-4819-B5E6-EE4B38C388F5 (accessed:
Mar. 31 2021).

Flutter Code 5 (2019). Dart API - widgets library - ExcludeSemantics class.
[Online]. Available: https://api.flutter.dev/flutter/widgets/ExcludeSemantics-class
.html (accessed: Mar. 31 2021).

Flutter Code 6 (2019). Dart API - widgets library - Text class - semanticsLabel pro-
perty (Online). Available: https://api.flutter.dev/flutter/widgets/Text/
semanticsLabel.html (accessed: Mar. 31 2021).

Fu, H., Cord, L., and McClain-Nhlapo, C. (2019). A billion people
experience disabilities worldwide — so where’s the data? World Bank
Online: https://blogs.worldbank.org/opendata/billion-people-experience-disabilit
ies-worldwide-so-wheres-data (accessed: Mar. 8 2021).

https://developer.android.com/guide/topics/ui/accessibility/apps
https://developer.android.com/guide/topics/ui/accessibility/apps
https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/introduction/
https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/introduction/
https://api.flutter.dev/flutter/widgets/Semantics-class.html
https://api.flutter.dev/flutter/semantics/SemanticsHintOverrides-class.html
https://api.flutter.dev/flutter/semantics/SemanticsHintOverrides-class.html
https://api.flutter.dev/flutter/semantics/SemanticsConfiguration/hint.html?web=1&wdLOR=c84BF2E97-DD26-4195-BA0A-BF1E64848AE6
https://api.flutter.dev/flutter/semantics/SemanticsConfiguration/hint.html?web=1&wdLOR=c84BF2E97-DD26-4195-BA0A-BF1E64848AE6
https://api.flutter.dev/flutter/semantics/SemanticsConfiguration/hint.html?web=1&wdLOR=c84BF2E97-DD26-4195-BA0A-BF1E64848AE6
https://api.flutter.dev/flutter/semantics/SemanticsService-class.html?web=1&wdLOR=cD7EF0364-486D-4819-B5E6-EE4B38C388F5
https://api.flutter.dev/flutter/semantics/SemanticsService-class.html?web=1&wdLOR=cD7EF0364-486D-4819-B5E6-EE4B38C388F5
https://api.flutter.dev/flutter/widgets/ExcludeSemantics-class.html
https://api.flutter.dev/flutter/widgets/ExcludeSemantics-class.html
https://api.flutter.dev/flutter/widgets/Text/semanticsLabel.html
https://api.flutter.dev/flutter/widgets/Text/semanticsLabel.html
https://blogs.worldbank.org/opendata/billion-people-experience-disabilities-worldwide-so-wheres-data
https://blogs.worldbank.org/opendata/billion-people-experience-disabilities-worldwide-so-wheres-data

52 Darvishy

Leung, H. D’Amours, M., and Kolinko, F. (2020). “Native Text Input for Flut-
ter” (Code Online). Available: https://pub.dev/packages/flutter_native_text_input
(accessed: Mar. 31 2021).

Pascolini, D and Mariotti, S.P. (2012). “Global estimates of visual impairment:
2010,” in: The British Journal of Ophthalmology, vol. 96, no. 5, pp. 614–618.

WebAIM (2017). WebAIM Screen Reader User Survey #7 Results (Online). Availa-
ble: https://webaim.org/projects/screenreadersurvey7/ (accessed: Mar. 8 2021).

Zakhour, S and Morgan, B (2021). Building a Cupertino app with Flutter https:
//codelabs.developers.google.com/codelabs/flutter-cupertino#0 (accessed: Mar. 8
2021).

https://pub.dev/packages/flutter_native_text_input
https://webaim.org/projects/screenreadersurvey7/
https://codelabs.developers.google.com/codelabs/flutter-cupertino#0
https://codelabs.developers.google.com/codelabs/flutter-cupertino#0

	Verifying Screen Reader Accessibility of Apps Developed Using Google Flutter
	INTRODUCTION
	METHODS
	Application
	Initial Development
	Usability Testing

	Optimisation
	Adaptation of the Hints
	Adding Feedback After Activating a UI Element
	Replacing Elements That Do Not Fulfill Essential Basic Functions of the Screen Reader
	Exclude Exclusively Decorative Elements
	Adding Additional Semantic Texts for a Better Understanding of the App
	Improving the Flow of Reading by Adapting the Semantic Text

	RESULTS
	Initial Useability Tests
	Useability Tests After Optimisation

	CONCLUSION

