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ABSTRACT

Owing to the increase in the number of pathological diagnoses and shortage of patho-
logists, the burden on pathologists has been increasing. Accordingly, support systems
are expected to be used for analyzing pathological images using deep learning to
reduce the burden on pathologists. However, the deep learning model must be trained
using a dataset consisting of many cases to improve its performance. However, crea-
ting such a dataset is labor-intensive and time-consuming. Thus, an efficient method
for creating large datasets is required for future practical use. In this study, we propose
a method for creating datasets using image segmentation based on deep learning.
First, we investigated whether the discriminative performance of the deep learning
model could be improved using a narrow-band light source for photographing path-
ological specimens. Consequently, the correct response rate was 0.93 when a white
LED was used as the light source and the image was used as the input; and 0.95 when
two narrow-band light sources with wavelengths of 500 and 570 nm were used as
the light sources and the image was used as the input. This indicates that using a
specific narrow-band light source can improve the discrimination performance of the
deep learning model compared with the use of white LEDs. In addition, we efficiently
constructed a large and precise dataset consisting of 1018 colorectal pathology ima-
ges (2028 images) and pixel-by-pixel annotation information using a dataset creation
method based on image segmentation via deep learning. In contrast to the conventio-
nal handwritten annotation process, which requires an average of 520 s, the proposed
method requires an average of 137 s; thus, the creation of the database is accelerated.
We trained a deep learning model using the dataset of colorectal pathology specimen
images created in this study. The deep learning model was trained to classify images
obtained by segmenting large-sized pathological specimen images into those contai-
ning malignant tumors and those without malignant tumors. The diagnostic accuracy
of the model was as follows: a sensitivity of 95.2%, specificity of 97.1%, a positive pre-
dictive value of 95.29%, and negative predictive value of 97.06%. The percentage of
correct classifications was 0.97, and the area under the curve was 0.99.
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INTRODUCTION

In recent years, the number of cancer cases and deaths due to cancer has
been increasing worldwide. According to global cancer statistics (Sung et al.
2020), colorectal cancer is one of the leading causes of cancer and mor-
tality, ranking fourth for the total number of cancer cases and second for
the total number of deaths in men and women. The number of new cases
of colorectal cancer in 2018 was 1148515 and the number of deaths was
576858.

Histopathological diagnosis was performed by a pathologist who obse-
rved the tissue and cells of the lesion obtained from the patient’s body under
a microscope. Currently, the number of pathologists is overwhelmingly small
compared with the increasing number of histopathological diagnoses, where
the burden on pathologists is becoming a serious problem. To solve this
problem, a histological image analysis system using a convolutional neu-
ral network (CNN) (Lecun, 1998) is effective. Research on the histological
image analysis using CNNs has been actively conducted, including tumor
classification, segmentation, and outcome prediction. Spanhol et al. created
a CNN odel to classify benign and malignant tumors of breast cancer using
the BreakHis dataset (Spanhol et al. 2015), which consists of histological
images of 82 breast cancer patients; and achieved an accuracy of appro-
ximately 90.0% (Spanhol et al. 2016). Raczkowski et al. created a deep
learning model to classify benign and malignant tumors using 10 histopa-
thological tissue slides of colorectal cancer from anonymous patients, and
achieved 99.1% accuracy (Raczkowski et al. 2019). They also developed a
CNN model that classified eight classes: tumor epithelium, simple stroma,
complex stroma, immune cells, debris (including necrosis, hemorrhage, and
mucus), normal mucosal glands, adipose tissue, and background, achieving a
92.4% accuracy. Stoean et al. used a dataset of 357 histopathological slides of
colorectal cancer to classify cancer grades using a CNN model that automa-
tically tunes hyper-parameters, achieving an accuracy of 92.0% (Stoean et al.
2020).

To improve the generalization performance of the CNN model, it was
necessary to train the model using a wide variety of samples. However, in
most of the previous studies, the models were trained using datasets with a
relatively small number of cases. One of the reasons for the small number of
cases in the dataset is that it is time consuming to create a dataset consisting
of many cases. Iizuka et al. created two datasets consisting of 4628 WSIs for
gastric tumors and 4536 WSIs for colorectal epithelial tumors, all of which
were manually annotated by pathologists (Iizuka et al. 2020). However, to
create large datasets for future practical use, it is necessary to develop an
efficient method for dataset creation. In this study, we proposed a method
for dataset creation using deep learning-based image segmentation and con-
structed a large and precise dataset consisting of 1018 colorectal histology
images (2028 images) and pixel-by-pixel annotation information using the
proposed method. We also investigated the effect of narrow-band light as a
light source for histopathological imaging on the recognition performance of
the CNN model.
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Figure 1: Example of an image with four types of annotation information assigned to
each pixel: normal tissue, malignant tumor, benign tumor, and out-of-focus/stain.

CREATING A DATASET OF COLORECTAL HISTOLOGY IMAGES

To construct a histopathological diagnosis model using deep learning, we
need a dataset of histological images with detailed annotations consisting
of various samples. However, such a dataset is time-consuming. Therefore,
we have developed an efficient dataset construction method based on image
segmentation. In this study, we used 2028 colorectal histology images of 1018
cases provided by the Saitama Cancer Center. Each pixel in the histology ima-
ges was assigned one of four types of information: malignant tumor, benign
tumor, normal tissue, other, and out-of-focus/stain, as shown in Figure. 1.
The flow of the annotation process using image segmentation is as follows:
First, the histological image is divided into foreground and background regi-
ons by image segmentation. The foreground region is one of the regions of
malignant tumors, benign tumors, and normal tissue; and the background
region comprises the rest of the regions. The operator, under the guidance of
a physician, assigns an appropriate pathological category to the foreground
region obtained by image segmentation. The operator also hand-corrects the
image if necessary. The average time required for the annotation process was
520 s when one operator performed conventional handwriting annotations in
six cases, where the average time required for the annotation process using
image segmentation in 103 cases was 137 s. As a result, the time required
for annotation using image segmentation was reduced compared with that
required for handwriting.

TRAINING AND EVALUATION OF A COLORECTAL CANCER
RECOGNITION MODEL

A colorectal cancer recognition model was constructed using a dataset cre-
ated based on 2028 images of colorectal histopathological slides from 1018
cases. When the annotation was completed for all 2028 pathological ima-
ges, the ratio of the area occupied by the pixels of each category to the
entire dataset is shown in Table 1, and the number of images containing
the pixels of each class is shown in Table 2. In this study, we trained a two-
class recognitionmodel with malignant tumor regions as “cancer-containing”
images and the other regions as “cancer-free” images; and evaluated its
performance.

The trained model was evaluated using a test dataset, and the correct
response rate, which is a measure of the percentage of correct predictions
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Table 1. Percentage of area occupied by each category relative to the entire data set [%].

Malignant Benign Normal tissue Other Out-of-focus/stain

19.7 0.860 14.1 60.6 4.76

Table 2. Number of images in each category.

Malignant Benign Normal tissue Other Out-of-focus/stain

905 91 1027 2028 430

Table 3. Confusion matrix of the colorectal
cancer recognition model.

Prediction

Positive Negative

Truth
Positive 1907 106
Negative 52 2646

among all the predictions, was 0.9665. The sensitivity, which is a measure of
the proportion of all images containing cancer that the model correctly predi-
cted as containing cancer, was 0.947. Specificity, a measure of the proportion
of all cancer-free images that the model correctly predicted as cancer-free,
was 0.981. The goodness of fit, which is a measure of the proportion of ima-
ges that the model correctly predicted as containing cancer, was 0.973. The
discrimination threshold for calculating these values was set to 0.5. Table 3
summarizes the inference results of the trained model on the test dataset and
their correctness as a confusion matrix. The receiver operating characteri-
stic (ROC) obtained by plotting the false positive rate and the true positive
rate for different discrimination thresholds is shown in Figure 2A. The area
under the ROC curve (AUC was the best when the value was 1) was 0.994,
indicating the recognition performance of the model.

For the trained model, we performed feature visualization using Grad-
CAM, which is an algorithm for visualizing the part of an image input for
a CNN model that contributes to the inference results, and can visualize the
feature area for each category as a heat map (Selvaraju et al. 2017). In this
study, we used Grad-CAM to visualize and identify regions where cancer
features exist in the histological images. Even when the output score of the
model (the value that indicates the presence of cancer in the image) is low, the
visualization results using Grad-CAM can prompt the pathologist to confirm
the presence of cancer and prevent oversight.

Figure 2B shows an example of an application of Grad-CAM to the infe-
rence of a trained model on a histological test image. The yellow areas on the
heatmap indicate the influence of the model on the output (probability that
the image contains cancer).
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Figure 2: (A) ROC curve of the colorectal cancer recognition model trained on a data-
set of 2028 colorectal histology images from 1018 cases and evaluated on the test
data. (B) Example of the visualization of cancer features using Grad-CAM in the trained
model.

Table 4. Confusion matrix of the model using different
narrow-band lights.

Light Conditions Sensitivity Specificity

500 nm, 570 nm 0.980 0.925
500 nm 0.942 0.837
570 nm 0.773 0.887

TRAINING AND VALIDATION OF A DEEP LEARNING MODEL USING
TWO TYPES OF IMAGES CAPTURED USING DIFFERENT
NARROW-BAND LIGHTS AS INPUT

A deep learning model was constructed using images taken using two diffe-
rent narrow-band light sources as inputs for 325 combinations of 26 different
narrow-band lights, selecting two without overlap. The output of the model
was a two-class recognition of “with cancer”or “without cancer”. Using this
model, we compared the recognition performance of two different combina-
tions of input images with two narrow-band light sources. The performance
of the model was evaluated using five-part cross-validation.

The highest average rate of 0.948 was obtained for the combination of
narrow-band light sources with a peak wavelength of 500 nm and narrow-
band light with a peak wavelength of 570 nm. The sensitivities and spe-
cificities of the models trained using images taken with narrow-band light
sources peaking at 500 and 570 nm, and the model trained using two types
of images takenwith narrow-band light sources peaking at these two different
wavelengths, are shown in Table 4.

DISCUSSION

In the present annotation, the same category of information was assigned
to all pixels in a single malignant tumor region. However, it is considered
that there are some areas in the malignant tumor that show the characteri-
stics of cancer, such as nuclear atypia and structural atypia, and some areas
that do not. Therefore, it is possible that when the image is segmented, only
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Table 5. Confusion matrix.

Prediction

Positive Negative

Truth Positive 91 0
Negative 7 99

areas that do not contain many cancer features are included in the image.
In this case, the correct label is “contains cancer” even though the segmen-
ted image does not contain many features of cancer. It is considered that the
CNN model predicts “does not contain cancer” for such images, resulting in
false negatives. In addition, in this label assignment method, if the segmented
image contains a malignant tumor, the label of the segmented image will be
“contains cancer” only. However, it is possible that not only the malignant
tumor itself, but also the surrounding tissues and tissues that do not directly
contain the malignant tumor, are affected by the malignant tumor and may
be learned by the deep learning model as features of cancer. Therefore, it is
considered that false positives are generated by predicting “contains cancer”
for images that do not contain malignant tumors but contain tissues affected
by malignant tumors (the correct answer label is “does not contain cancer”).
We calculated the main prediction label of one image before segmentation
and compared it with the main label of one image before segmentation;
where the confusion matrix is shown in Table 5.The main predictive label
of one image before segmentation was “contains cancer” if any of the predi-
ctive labels of the trained deep learning model for each of the 25 segmented
images contained “contains cancer,” and “does not contain cancer” if oth-
erwise. The main label of one image before segmentation was “contains
cancer” if the image contained a malignant tumor region, and “does not con-
tain cancer” if otherwise. Table 5 shows that the sensitivity of the diagnosis
using this deep learning model is 100%, suggesting that a histopathologi-
cal diagnosis system using deep learning may be able to make a diagnosis
of histological images with high accuracy without overlooking malignant
tumors.

Next, we consider the recognition performance of the deep learning model
in relation to the light source when photographing the histopathological sli-
des. In HE staining, the cytoplasm is stained pink with eosin dye (hereinafter
referred to as “E dye”) and the nuclei are stained blue with hematoxylin dye
(hereinafter referred to as “H dye”) (Yamaguchi, 2015). Figure 3A shows
the spectral absorption coefficients of the E and H dyes. Figure 3A shows
absorption peaks near 530 and 590 nm for the E and H dyes, respectively.
In the training of the deep learning model with a single input of histology
images taken using narrow-band light as the light source, a high average
correct response rate was obtained when the peak wavelength of the narrow-
band light was between 480 and 560 nm. Since both the E-dye and H-dye
are absorbed well at wavelengths in this range, the nuclei and cytoplasm
of cells appeared darker in the histological images taken with narrow-band
light peaking at these wavelengths; and both nuclear and structural atypia,
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Figure 3: (A) Spectral absorption coefficients of H- and E-dyes (Yamaguchi, 2015) (B)
Example images of a histopathological slide taken using a wavelength of 500 nm as a
light source (C) Example images of a histopathological slide taken using a wavelength
of 570 nm as a light source.

which are characteristic of colorectal cancer, can be observed more clearly.
Therefore, a deep learning model with higher recognition accuracy than other
methods may have been obtained.

In the training of the deep learning model using two types of images taken
with different narrow-band light sources as input, we obtained a higher ave-
rage rate of correctness for 17 combinations of narrow-band light sources
than those of the deep learning model using images taken with white light
sources as input. All 17 combinations use narrow-band lights with peak
wavelengths of 500 nm or 510 nm, and narrow-band lights with peak wave-
lengths of 400–420 nm or 550–650 nm. The wavelengths of 500 nm and
510 nm have relatively high absorption coefficients for both the E and H
dyes, while the wavelengths of 400–420 nm and 550–650 nm have relatively
low absorption coefficients for the E-dye. Yuzuki et al. reported that the dif-
ference in stainability of HE staining was mostly due to the staining attitude
of the E-dye (Yugi et al. 2016). Therefore, by combining images taken using
the band with a low absorbance of E-dye with images taken using the band
with a high absorbance of E- and H-dyes and using them for learning, the
model becomes more resistant to variations in staining.

In addition, if we look at the sensitivity and specificity in Table 4, 500
nm is included in the band between 480 nm and 560 nm, where the ave-
rage correctness rate was high in the model with one condition of image
as input, suggesting that the CNN can discriminate cancer cells based on
nuclear and structural atypia, which are characteristics of colorectal cancer,
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and thus has high sensitivity. Additionally, by also using wavelengths in the
band where both the E-dye and H-dye absorb light well, the sensitivity can
be similarly increased. However, at 500 nm, many images containing gland
ducts, as shown in Figure 3B,weremisrecognized as images containing cancer
cells. In contrast, at 570 nm, these images were correctly recognized, and the
specificity was high. This may be due to the fact that the shape of each cell
nucleus became clear at 570 nm, as shown in Figure. 3C, and because the
light absorption in the cytoplasm was low, it was possible to recognize that
the nuclei were normal. In addition, we believe that the specificity can be
increased not only at 570 nm, but also by using wavelengths in the band
where the H dye absorbs lighter than the E dye.

Therefore, by combining two types of images taken with light in the bands
where both the E-dye and H-dye absorb light well (500 nm and 510 nm) and
in the bands where the H-dye absorbs light lighter than the E-dye (400–420
nm and 550–650 nm), it is possible to obtain images with high sensitivity and
specificity that are resistant to staining variation. This deep learning model
has higher sensitivity and specificity, and is more robust to staining variation
than the deep learning model trained using images taken with white light or
one type of narrow-band light source.

CONCLUSION

In this study, we constructed a pathological specimen imaging system using
narrow-band light sources using two specific wavelengths as the imaging
light source, and semi-automatically created a dataset with high accuracy
via image segmentation using deep learning. In addition, we constructed a
system that can efficiently and semi-automatically create a large and precise
dataset comprising colorectal pathology images and pixel-by-pixel annota-
tion information. We evaluated these systems and confirmed that they could
classify colorectal pathology specimen images as accurately and quickly as, or
more accurately than, pathologists. Thus, we demonstrated their usefulness
as a support system for pathological image analysis.

REFERENCES
Iizuka, O., et al., “Deep Learning Models for Histopathological Recognition of

Gastric and colonic epithelial tumours”, Scientific Reports, Vol. 10, No. 1 (2020),
pp. 1–11.

Lecun, Y., “Gradient-based learning applied to document recognition”, Proceedings
of the IEEE, Vol. 86, Issue 11(1998), pp. 2278–2324.

Rçczkowski, Ł., et al., “ARA: accurate, reliable and active histology image reco-
gnition framework with Bayesian deep learning”,Scientific reports, Vol.9, No. 1
(2019), pp. 1–12.

Ronneberger, O., Fischer, P., and Brox, T., “U-net: Convolutional networks
for biomedical image segmentation”, In International Conference on Medical
image computing and computer-assisted intervention, Springer, Cham, (2015),
pp. 234–241.

Selvaraju, R. R., et al., “Grad-cam: Visual explanations from deep networks via
gradient-based localization”, The IEEE International Conference on Computer
Vision (ICCV), (2017), pp. 618–626.



Automatic Generation of AI-Based Cancer Pathology Data 119

Spanhol, F. A., Oliveira, L. S., Petitjean, C., and Heutte, L., “A dataset for
breast cancer histology image recognition”, IEEE Transactions on Biomedical
Engineering, Vol.63 No. 7 (2015), pp. 1455–1462.

Spanhol, F. A., Oliveira, L. S., Petitjean, C., and Heutte, L., “Breast cancer histology
image recognition using Convolutional Neural Networks”, 2016 international
joint conference on neural networks (IJCNN). IEEE, (2016), pp. 2560–2567.

Stoean, R., “Analysis on the potential of an EA–surrogate modelling tandem for deep
learning parametrization: an example for cancer recognition from medical ima-
ges”, Neural Computing and Applications,Vol. 32, No. 2 (2020), pp. 313–322.

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., &
Bray, F.,”Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries”,CA: a cancer journal for
clinicians,Vol. 71, No. 3 (2021), pp. 209–249.

Yamaguchi, Y., “Multispectral Image Analysis for Pathology”, The journal of the
institute of image information and television engineers, Vol. 69, No. 5 (2015),
pp. 432–436.

Yugi, H., et al., “Fundamental study on control of stainability of hematoxylin-eosin
staining using a spectrophotometer”, Japanese journal of medical technology, Vol.
65, No. 3 (2016), pp. 251–259.


	Automatic Generation of AI-Based Cancer Pathology Data and Highly Accurate Colorectal Cancer Pathology Diagnosis Support
	INTRODUCTION
	CREATING A DATASET OF COLORECTAL HISTOLOGY IMAGES
	TRAINING AND EVALUATION OF A COLORECTAL CANCER RECOGNITION MODEL
	TRAINING AND VALIDATION OF A DEEP LEARNING MODEL USING TWO TYPES OF IMAGES CAPTURED USING DIFFERENT NARROW-BAND LIGHTS AS INPUT
	DISCUSSION
	CONCLUSION


