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ABSTRACT

Due to the shortage of labor force in Japan, skill transfer and training education are
becoming increasingly important in the manufacturing industry. In recent years, vir-
tual reality (VR) technology has attracted attention in work-related training, enabling
simplified training, but there is a problem that human and time resources cannot be
sufficiently allocated to training due to a lack of educators and an immature training
system. In this study, we developed a method to automatically recognize tasks and
actions to improve the efficiency of education and training. To recognize tasks and acti-
ons, we adopted a deep learning model that can recognize actions from videos in time
series, and we pre-trained the model on a large open-source dataset. We evaluated the
performance of the model on unlearned procedures and people by preparing a data-
set with three different procedures and 10 participants. The overall validation metrics
all exceeded 90%. Specifically, results of more than 90% were achieved for unlear-
ned people, but a drop of more than 5% was observed for all unlearned procedures,
suggesting that issues must be addressed for application to task training.
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INTRODUCTION

Due to the shortage of labor force in Japan, skill transfer and training edu-
cation are becoming increasingly important in the manufacturing industry.
According to a 2021 Ministry of Economy, Trade and Industry (METI)
survey, more than 40% of manufacturing companies cited a lack of progress
in human resource and skills development as a management issue (METI,
2021). Insufficient training not only prevents work efficiency improvement
but also increases the risk of work errors and omissions. Recently, the use of
virtual reality (VR) technology has attracted attention as a way to conduct
efficient training, with the advantages of smaller facilities than real-world
environments, the ability to safely conduct training for dangerous tasks, and
the ability to conduct repetitive training. While this makes it possible to
conduct simple training, there is a problem of inadequate human and time
resources due to a lack of educators and an immature training system, which
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Figure 1: Reference task (Task 1).

Figure 2: Task that assumes errors in work (Task 2).

prevents adequate feedback for trainees. Therefore, there is a need to improve
the efficiency of training and education so that trainees can acquire suffici-
ent skills even when there is a shortage of educators. Motion analysis, which
divides a task into detailed actions, is an effective method for recognizing the
overburdening, waste, and irregularity of a task. It is also useful for evalua-
ting the performance of tasks during training. However, in the past, analysis
was generally conducted by humans, which required significant time and
effort, making it difficult to conduct detailed analysis for individual training
sessions.

Therefore, in this study, we developed a method to automatically reco-
gnize tasks and actions to support the creation of educational content and
self-learning for trainees. The target work was cutting using a lathe, which
is practiced in mechanical engineering departments of universities, technical
colleges, and technical high schools. An RGB camera was used because it
enables comparison between the actual work and training. Several papers
(Lea et al. 2017; Farha and Gall, 2019; Ishikawa et al. 2021) have pro-
posed models that can perform action segmentation using RGB camera
information. There are also models (Carreira and Zisserman, 2017) that
can obtain feature extractors for videos by pre-training on large open-source
datasets, which is expected to enable motion recognition without a large
amount of labeling. In this study, we adopted one of the action segmenta-
tion models using a feature extractor that can be pre-trained, which has been
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Figure 3: Task that assumes omissions in work (Task 3).

Figure 4: Example of VR operation scene.

very successful in recent years, and applied it to a video of a task using a
VR lathe. Three types of tasks were prepared: a reference task (Task 1), task
that assumes work errors (Task 2), and task that assumes work omissions
(Task 3). The predictive ability of the model was evaluated for procedures
and operator data that were not used when the model was trained.

VIDEO DATASET OF A CUTTING OPERATION IN VR SPACE

In this study, we prepared a video dataset of facing and outer round turning
on a lathe system in VR space. A lathe was placed in the VR space, and the
spindle was constantly rotating with a cylindrical material attached to the
chuck. The carriage feed and lateral feed handles of the lathe could operate
the carriage feed and lateral feed of the lateral feed table, respectively. Each
of these handles returned a reaction force by a motor, and a larger reaction
force was generated while contacting the work compared to not contacting it.

Figures 1 to 3 show the movements of the bite edge in the task. In Task 1,
the work was cut in the order of facing and outer round turning. In Task 2,
the direction of bite release was different to that in Task 1, representing an
error in the direction of bite movement. In Task 3, only the outer round
cutting from Task 1 was performed, representing a lapse of procedure. In
each task, the cutting depth and feed rate were specified, and images showing
the movement of the cutting edge were presented in the VR space so that the
operator could check the contents of the task and current cutting depth and
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Figure 5: Overall structure of action segmentation refinement framework (ASRF).

feed rate at all times. Figure 4 shows an example captured image; the image
was taken with the carriage feed and cross feed handles visible.

Under the above conditions, 10 participants took part in the experiment,
and each participant filmed 10 times for Task and once for each of Tasks
2 and 3. Each frame was given one of six labels: Stop, Left (feeding left),
Right (feeding right), Forward (cross feeding forward), Back (cross feeding
backward), and Empty (transporting empty). The frame rate was 15 fps, and
the resolution was resized to 240 pixels on the short side.

BUILDING THE ACTION SEGMENTATION MODEL

Model Structure

In this study, inflated 3D ConvNets (I3D) (Carreira and Zisserman, 2017)
was used to extract features from video images, and the action segmentation
refinement framework (ASRF) proposed by Ishikawa et al. (2021) was used
as a learning model to output classification results. The system input was
RGB video data X = [x1, · · · , xT] ∈ RT×C×H×W , where T is the num-
ber of frames of the input video, C is the number of channels (C = 3 in the
case of RGB images), and H and W are the numbers of pixels in the hei-
ght and width directions, respectively. X is the input to the processor and
also the input to I3D, and the features output by I3D are represented as
Y = [y1, · · · , yT] ∈ RT×D. The features output by I3D are the input to
ASRF, where D is the dimension of the features. The final output of ASRF
is the classification result Ẑ = [̂z1, · · · , ẑT] ∈ RT×K and the probability

of boundary B̂ =
[̂
b1, · · · , b̂T

]
∈ [0, 1]T , where K is the total number of

classes. The output of the whole system is the frame-by-frame classification
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resultZ = [z1, · · · , zT] ∈ {0, 1}
T×K and the boundary B = [b1, · · · , bT] ∈

{0, 1}T . Figure 5 shows the overall structure of the model from input to out-
put. We used the long-term features extractor (LEF), action segmentation
branch (ASB), and boundary regression branch (BRB) including the temporal
convolutional network (TCN) (Farha and Gall, 2019) with dilated residual
layer (DRL); this model has been shown to be capable of action segmentation
from time-series features, able to consider long-term dependencies, and highly
robust to temporal resolution. In addition, the classification performance can
be improved by overlapping the network into a multi-stage structure.

Model Training

In this study, the I3D model, which was pre-trained using the open-source
datasets ImageNet and Kinetics 400, was used as a feature extractor, and the
features extracted from the dataset of cutting operations in VR space were
used as input to train the ASRF model, which is an action recognition model.
The results are listed in Table 1. For training, 10 data for each of the 9 par-
ticipants in Task (90 data in total) were used for training. The test data set
consisted of one person’s data (10 data) for Task 1 and one person’s data
(10 data) for each of Tasks 2 and 3. Due to the small size of the dataset, we
conducted a 10-fold cross-validation, one person’s data were used as the test
data for Task 1 when evaluating the model. The Adam optimization algo-
rithm was used with learning rate 0.0005 and batch size 1. For epochs, the
maximum value was set to 50, and the optimal loss value was adopted.

MOTION SEGMENTATION RESULTS

Metrics

In this study, we used accuracy rate, edit distance, and segmental F1 score
with overlapping threshold rate k (F1@k) as evaluation metrics for the
segmentation results. The accuracy rate is the percentage of predicted labels
that match with the correct labels for all classification results. Edit distance
is the minimum number of operations on the predicted label sequence that
match the correct label sequence by insertion, deletion, and replacement, divi-
ded by the length of the label sequence. In F1@k, intersection over union (IoU)
is calculated for each operation interval of the predicted label sequence, and
rate ≥k is considered as true positive (TP) and other cases as False Positive
(FP). The absence of matching predictive labels for each action interval in
the sequence of correct labels is counted as a False Negative (FN). The F1
score is calculated from the precision and recall scores and is expressed by
the following equations.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2
Precision · Recall
Precision + Recall

(3)



134 Tawata et al.

Table 1. Evaluation results divided by task and by whether the data were the same as
those of participants in the training data.

Task Learned / Unlearned person Acc. Edit F1@0.1 F1@0.25 F1@0.5

1 Unlearned 0.973 0.975 0.986 0.985 0.975
2 Learned 0.866 0.886 0.930 0.918 0.881
3 Learned 0.823 0.905 0.917 0.911 0.900
2 Unlearned 0.873 0.868 0.922 0.922 0.868
3 Unlearned 0.795 0.908 0.908 0.908 0.886

Table 2. Average rated confusion matrix (Task 1).

Task 1 Prediction

Left Right Forward Back Stop Empty

Ground truth Left 0.981 0.000 0.001 0.001 0.000 0.017
Right 0.000 0.813 0.006 0.017 0.000 0.164
Forward 0.001 0.000 0.990 0.000 0.000 0.009
Back 0.001 0.000 0.001 0.968 0.000 0.030
Stop 0.000 0.000 0.000 0.000 0.994 0.006
Empty 0.017 0.006 0.009 0.012 0.017 0.938

Table 3. Average rated confusion matrix (Task 2).

Task 2 Prediction

Left Right Forward Back Stop Empty

Ground truth Left 0.962 0.000 0.000 0.003 0.000 0.035
Right 0.217 0.581 0.009 0.046 0.000 0.147
Forward 0.006 0.001 0.977 0.000 0.000 0.015
Back 0.000 0.001 0.000 0.980 0.000 0.019
Stop 0.000 0.000 0.000 0.000 0.980 0.020
Empty 0.026 0.010 0.016 0.016 0.038 0.894

Table 4. Average rated confusion matrix (Task 3).

Task 3 Prediction

Left Right Forward Back Stop Empty

Ground truth Left 0.961 0.000 0.000 0.006 0.000 0.033
Right - - - - - -
Forward 0.004 0.001 0.717 0.261 0.000 0.017
Back 0.000 0.000 0.000 0.946 0.000 0.053
Stop 0.000 0.000 0.000 0.000 0.982 0.018
Empty 0.023 0.007 0.013 0.029 0.041 0.887

While F1@k penalizes excessive segmentation, it does not penalize slight
deviations between the predicted label sequence and correct sequence, which
makes it useful for evaluating segmentation tasks (Lea et al. 2017).
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Figure 6: Best and worst accuracy cases for each task.

Motion Segmentation Results

To evaluate the action segmentation results, each evaluation index was calcu-
lated based on the results for the test data, and the mean values in the 10-fold
cross-validation were calculated. Values of 0.1, 0.25, and 0.5 were used as
thresholds for F1@k. The results show a accuracy rate of 0.901, edit distance
of 0.923, F1@0.1 of 0.951, F1@0.25 of 0.947, and F1@0.5 of 0.917.

To evaluate the predictive ability of the test data for the people and pro-
cedures that were not included in the training data, we divided the test data
not only by task but also by whether the data were the same as those of the
participants in the training data. Table 1 lists the mean values for the 10-fold
cross-validation. Here, the evaluation values were calculated for each datum.

Moreover, Tables 2, 3, and 4 list the results of each cross-validation avera-
ged by scaling each element of the confusion matrix for each task by the total
number of correct labels in each class. In all cases, the correct prediction was
the largest for each class. However, the percentage of Right misrecognized as
Left for Task 2 was 0.217, and the percentage of Forward misrecognized as
Back for Task 3 was 0.261, which are relatively high values.

Figure 6 shows the highest and lowest percentages of correct answers for
each task.

DISCUSSION

Despite the small number of training data (90) and the existence of unlearned
tasks with different procedures, the results of this study showed that not only
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the percentage of correct answers but also edit distance and each F1@k were
equal to or higher than accuracy rate, suggesting the possibility of motion
segmentation applications in work training and education.

Table 1 shows that the prediction results for Task 1 for the participant
trained on the model showed high values exceeding 0.97 for all indices. This
suggests that recognition is possible even for participants who are not present
in the training data. This may be due to the fact that the feature extra-
ctor is able to adequately capture the characteristics of movements rather
than persons through pre-training. In contrast, Tasks 2 and 3 for learned
persons showed lower overall predictions than Task 1 for unlearned per-
sons. Table 3 shows that in Task 2, the percentage of Right misrecognized
as Left was 0.217, which is larger than that of the other classes. First, the
two classes had the same handles to operate, and the difference was only the
direction. Next, from in Figure 6 (d), Task 2 includes an action that is not
present in Task 1 and becomes Right immediately after Left, confirming that
Right was misrecognized as Left there. These two factors may have contri-
buted to the misrecognition of Right as Left in Task 2. The above suggests
that misrecognition of unlearned procedures is an issue, even in a pre-trained
model.

Table 4 shows that in Task 3, the percentage of Forward misidentification
as Back was 0.261, which was larger than that of the other classes, while the
reverse misrecognition did not occur at all. This may be due to the fact that
Task 1, which was used to train the model, involved facing, whereas Task 3,
which was used to train the model, only involved moving the carriage. In this
regard, it is necessary to subdivide the labeling and separate the movements
that only move the table from those that perform cutting.

CONCLUSION

In this study, we applied an action segmentation model to three types of
cutting operations using a lathe in VR space. To develop a method to automa-
tically recognize tasks and actions for more efficient education and training,
the results were evaluated on data of persons and actions that were not used
for training. Correctness rate, edit distance, and segmental F1 score were
used as evaluation indices, and the overall validation showed that all indi-
ces were above 0.9, suggesting that the action segmentation model is useful
for recognizing tasks and actions even for small training data. The values
of each index remained above 0.9 even for human actions that were not
used in the training, suggesting generalizability to different people. Howe-
ver, some issues were identified, such as performance degradation for actions
of different procedures.
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