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ABSTRACT

Brain disorders caused by Gaming Addiction drastically increased due to the rise
of Internet users and Internet Gaming auditory. Driven by such a tendency, World
Health Organization and the American Medical Association addressed this problem
as a “gaming disorder” and added it to official manuals. Powerful, self-learning
intelligent algorithms are suitable to predict behavior patterns and prognosis brain
response depending on the addiction severity in dynamics in different conditions
and stages. The current paper aims to enrich the knowledge base of the correla-
tion between gaming activity, decision-making, and brain activation, using Machine
Learning algorithms and advanced neuroimaging techniques. The proposed gaming
behavior patterns prediction platform was built inside the experiment environment
composed of a functional Near-Infrared Spectrometer and the computer version of
Iowa Gambling Task and could benefit in diagnosing gaming disorders, their patterns,
mechanisms, and abnormalities.
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INTRODUCTION

Internet Gaming Disorder (IGD) is an addiction that was officially admit-
ted by American Psychiatric Association in 2013 (APA) and World Health
Organization in 2018 (WHO). During the last decade, IGD affected audie-
nces raised significantly to more than 3% in global prevalence (Stevens et al.,
2021) and was already called a “new phenomenon” (Przybylski et al., 2017).
Determining such a syndrome and its factors, such as depression, anxiety
when the game is taken away, loss of interest in normal daily activities, edu-
cation, work, family life, loss of behavior control and ability to resist the
game, clinical professionals placing IGD to the same raw with substance
addiction, such as cocaine or tobacco (APA, 2013). Preferring short-term
rewards instead of long-term winnings and risk-acceptance strategy was used
as impairment behavioral patterns in decision-making analysis named Iowa
Gambling Task (Bechara and Damasio, 2002). To accelerate gaming acti-
vity, experiment participants had chosen cards one by one from four decks,
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followed by developed rules (Bechara et al., 1994). IGT has several dimen-
sions used to estimate gaming decision-making impairment numerically: 1)
cards have different win/loss values, and total game score can be increased
or decreased depending on chosen strategy; 2) the game has 100 card choi-
ces trials conditionally separated on five blocks by 20 trials each that have
different psychosomatic conditions and meanings, and 3) decks have diffe-
rent rewards/punishment probability and responsible for choosing short-term
or long-term winning strategy (decks A and B have high rewards and loses
probability and called “bad” decks; decks C and D have low rewards and
loses probability, called “good’ decks and preferred in terms of long-term
perspective). Healthy participants begin the game in the condition of totally
unknown and uncertainty (first 20 trials, block 1), understanding the game
logic somewhere at the middle of the task, passing through “pre-hunch” and
“hunch” conditions (trials 21-60, blocks 2 and 3), testing different winning
approaches in the “conceptual” and “risky” periods (trials 61-100, blocks 4
and 5), and achieving rewards at the end, calculated in dollars and as a dif-
ference between the sum of “bad” and “good’ decks (Bechara et al., 1994;
Bechara and Damasio, 2004).

For more than 20 years, IGT has been used in different applications and
experiments with brain disease and decision-making disorders, but in combi-
nation with modern neuroimaging techniques, such as functional magnetic
resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS),
electroencephalography (EEG), and others significant achievements have
been made in the cognitive analysis of human brain activation during gaming
and gaming behavioral biomarkers (Aram et al., 2019). Thank its invasivity,
ability to provide measurements in motions, and relevant low cost, fNIRS is
utilized in different applications as an extension of IGT: correlation analy-
sis of changes in brain activity, measured as oxy-hemoglobin (HbO) levels
and IGT performance (Ono et al., 2015; Li et al., 2019), effect between
IGT blocks and its reflection on HbO signal measured by ANOVA in left
and right brain hemispheres (Balconi et al., 2018; Kora Venu et al., 2020),
t-test of HbO changes during low-risk and high-risk card selection (Bembich
et al., 2018) and difference in HbO activation from participants with low
and high IGT score (Suhr and Hammers, 2010). At the same time, statistical
analysis methods used in these applications are based on estimation of the
variables relation power and their mutual impacts and fail in less control-
led experiment environments and low degree of freedom. But constructed
based on “wide data,” artificial Machine Learning (ML) algorithms, widely
used in different applications (Aram et al., 2020; Aram et al., 2021), are
suitable to predict variables health and behavior, prognosis models performa-
nce, and evaluate correlation results (Bzdok et al., 2018; Kumar and Chong,
2018). The current study proposes the intelligent ML platform to predict
gaming behavioral patterns of healthy participants based on brain activa-
tion during decision-making simulation. Gaming activity will be generated
by IGT and predicted by HbO signal features space. The task will be divided
into five blocks and brain hemispheres to estimate differences in behavioral
patterns.
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Figure 1: IGT experiment design with fNIRS synchronization time points.

METHOD

Experiment Design

Thirty young adults (25 females) in the age range 19 – 26 (M = 21.8,
SD = 1.77) were hired voluntarily to participate in the data collection,
approved by Southwest University (Chongqing, China) Institutional Review
Board. Before the experiment, all participants reported in writing about right-
handing, absence of neurological, psychiatric issues history, and problems
with vision. IGT score distribution of the whole sample (N= 30) is calculated
by equation (Bechara et al., 1994; Bechara and Damasio, 2004) and demon-
strates the learning curve of gaming experience transition corresponding to
healthy patients (Li et al., 2019; Kora Venu et al., 2020).

Following the IGT paradigm (Bechara et al., 2004), participants recei-
ved $2000 virtual money before the experiment and performed 100 card
choosing trials while connected to the functional near-infrared spectrome-
ter FOIRE-3000/16 (Shimadzu Corp., Japan). The cap with 16 transmitters
and 16 receivers connected by 52 channels was worn on the testee’s head,
covering target brain regions of interest (ROI) and positioned using Mon-
treal Neurological Institute (MNI) standard space. Light beam propagation
through human tissue in accordance with Beer-Lumber Law with waveleng-
ths 780 nm, 805 nm, 830 nm, and frequency 4 Hz was registered by fNIRS
in target ROI in the left brain hemisphere, covered by 28, 35, 36, 42, and 43
channels, and by channels 25, 32, 33, 40, and 41 in the right hemisphere for
measurements stability and the result reliability. Raw data were filtered from
noise, breathing, moving, or other experiment artifacts using Wavelet-MDL
detrending algorithm from the NIRS-SPM software package (Ye et al., 2009).

The records of HbO were synchronized with the IGT timeline (Figure 1).
For each n trial, changes of HbO levels were registered in two critical time
points, responsible for gaming decision-making: 1) Reaction Time Point
(RTPn) at the end of each decision-making period, and 2) Trial Start Time
Point matching with Task Duration Time Point (DTPn-1) at the end of each
trial. Thus, RTPn and DTPn-1 are timestamps that determine boundaries of
the anticipatory interval, during that experiment, participants make their
card choice in accordance with the adopted strategy. The HbO signal cor-
responding to these points has been processed, divided by features, and used
to evaluate gaming behavior prediction by the ML platform.
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Features Extraction

HbO signal features space was constructed for prediction improvement in
decision-making time window points RTP and DTP for the left and the right
brain hemispheres (LH and RH) separately, reflecting to signal shape, distri-
bution, average error from the actual value, etc.: 1) mean value (LHmean,
RHmean); 2) variance (LHvar and RHvar); 3) standard deviation (LHsd and
RHsd); 4) kurtosis (LHku and RHku); 5) skewness (LHsk and RHsk).

Machine Learning Models

ML gaming behavior prediction platform was run in R 4.0.3 (R Core Team,
2018). In the first stage, 80% of normalized HbO signal features were used
for training, and 20%were used for testing ML algorithms: Multiple Regres-
sion, Classification and Regression Trees (CART), Artificial Neural Network
(ANN), Support Vector Machine (SVM), and Random Forest. In the second
stage, two metrics were estimated prediction accuracy: coefficient of determi-
nation (R Squared) and Root Mean Squared Error (RMSE). Lastly, classifiers
with R squared closed to 1 and the lowest RMSE tested gaming behavior
prediction power in each IGT block by the signal from the left and right
hemispheres. ML-based gaming behavior prediction pipeline separated by
the left and right brain hemispheres is presented in Figure 2.

RESULT

Performed research identified several tendencies that illustrate patterns of
gaming behavior, predicted byML-based platform (Figure 2): 1) RMSE incre-
ase from IGT block 1 to block 5 in both hemispheres; 2) R Squared decrease
from IGT block 1 to block 5 in both hemispheres; 3) in each IGT block,
the best model is the model with the lowest RMSE (in units of IGT score)
and highest R Squared; 4) RMSE of best fitted model decrease from IGT
block 1 to block 5 in both hemispheres; 5) the prediction accuracy of best
fitted models more robust than training model in all IGT blocks and both
hemispheres.

DISCUSSION AND CONCLUSION

The current paper and previous research (Bembich et al., 2010; Suhr and
Hammers, 2010; Ono et al., 2015; Balconi et al., 2018; Li et al., 2019; Kora
Venu et al., 2020) illustrate the significant difference in gaming behavioral
patterns depending on participant psychosomatic condition. Pattern transfer
from the uncertainty condition to certainty and risk inside IGT simulation
is not smooth, not limited by blocks, and boundaries are not clearly defi-
ned. Performed research does not contradict such tendencies, but spreading
pattern correlation by fNIRS signal features allows to estimate prediction
power more pressingly and prognosis behavior more reliable. The ML-based
platform was constructed to evaluate the correlation between brain activa-
tion and gaming activity during five conditions and both hemispheres. SVM
with RBF showed one of the best accuracies: lowest RMSE 3.37 – 7.84 and
highest R Squared 0.29 – 0.96 (Figure 2). The best fitted model was selected
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Figure 2: ML-based gaming behavior prediction pipeline: A – the left hemisphere,
B – the right hemisphere.
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and applied to the testing data set, showing a pattern that keeps the original
learning effect transition, following healthy participants behavioral effect.
Experiment participants are adding risk to decision-making, increasing the
standard deviation of quantified card selection score and a measure of predi-
ction error RMSE. The achieved mechanics illustrates the human behavioral
pattern during gaming, predicted by activity in the brain.
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