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ABSTRACT

The objectives of this study were two-fold: (1) to investigate the relationship among
electroencephalography (EEG) features, task difficulty levels and subjective self-
assessment (NASA-Task Load Index (TLX)) scores and (2) to develop machine learning
algorithms for classifying mental workload using EEG features. Seventy EEG features
(5 frequency band power for 14 channels) were selected as independent variables.
One output variable reflecting the difficulty level of n-back memory task was classi-
fied. Prefrontal and frontal theta, prefrontal beta-high, occipital, parietal and temporal
gamma and occipital alpha activities were found to be the most effective parame-
ters. The results obtained for the four classes of classification problem reached the
accuracy of ~68% with Random Forest (RF) algorithm. In addition, maximum accuracy
of ~87% was reached with 2-class-based (low and high mental workload) estimation
model along with Gradient Boosting Machines (GBM) algorithm. The results from the
analysis indicate that EEG signals play an important role in the classification of men-
tal workload. Another remarkable result was high classification performance of GBM,
LightGBM and extreme gradient boosting (XGBoost) algorithms that have been deve-
loped in the recent past and therefore not frequently used in studies on this subject in
the literature.
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INTRODUCTION

Mental workload analysis helps to recognize the mental fatigue, evaluate
the human performance of different level tasks and adjust cognitive sou-
rces for safe and efficient human-machine interactions. Excessive levels of
mental workload can lead to errors or delays in information processing. Phy-
siological techniques have frequently used to investigate mental workload
during human-machine interaction because they are objective, do not depend
on what the participant perceives, and can be used in real time thanks to
continuous signals. Especially, monitoring brain activity has been verified to
be sensitive and consistent reflector of mental workload changes. In recent
years, with the need to analyze continuous and large-scale data obtained by
physiological methods, the use of machine learning algorithms has become
widespread in estimating and classifying mental workload.

Within the scope of this study, it was aimed to investigate whether the
change in mental workload during n-back memory tasks is related to brain
waves, to compare it with the results obtained in the literature before, and
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to develop a model estimating mental workload based on machine learning
algorithms by using EEG data. In the literature, the studies where this topic is
addressed as a classification problem show that the problem becomes more
difficult as the number of class increases and therefore the performance of
the model is reduced (Grimes et al., 2008; Borys et al., 2017). Therefore,
it was tried to obtain a model that predicts the mental workload with the
highest possible accuracy according to four difficulty levels. Unlike other stu-
dies; GBM, LightGBM and XGBoost algorithms which are not used in the
literature especially in the estimation of mental workload by EEG method
were included in the study as well as traditional machine learning techniques.
Model performances were examined and compared with other algorithms.
The models were corrected by determining the best hyper-parameter values
and the results were compared for all algorithms.

This study focuses on the classification rate of mental workload level based
on EEG features and the use of relatively new machine learning algorithms
for this target. In addition, it is aimed to shed light on further studies with
the important findings of the study considering as a pilot application.

MENTAL WORKLOAD AND EEG

Among various neurophysiological markers, EEG has received much atten-
tion because of its ease for implementation with a portable measure and
high temporal resolution (Yin & Zhang, 2017). EEG permits an objective
workload assessment and can provide real-time evaluation, thus allowing
the system designer to quickly and accurately identify usability problems
as they occur. In general, the power spectrum analyses have been mostly
applied in existing experimental studies with EEG measurement (Choi et al.,
2018). Power spectrums are created and analyzed by looking at the amplitu-
des of the different frequency ranges. In particular, alpha and theta activity
has been confirmed to be effective in discriminating mental workload levels
(Zammouri et al., 2018). Experimental results show that the averaged accu-
racy of distinguishing changes in the theta [4–7Hz] (θ ) band is 79%. For the
alpha band [8–11Hz] (α) the averaged accuracy reached 78%. In a study,
it was observed that the theta power in frontal brain area increases while
the alpha power in the parietal and occipital sites decreases under high men-
tal workload condition (Holm et al., 2009). The same authors reported that
the task difficulty level was positively related to the frontal theta/parietal
alpha ratio. There are also studies showing that central, parietal and occipi-
tal beta power is associated with changes in mental workload (Yin & Zhang,
2017; Plechawska-Wojcik et al., 2019), and also increased power of the high-
frequency beta and gamma waves in posterior cortex in response to changing
task performance (Chuang et al., 2012).

Traditional machine learning techniques applied to the problem of cogni-
tive workload classification are k nearest neighbor (kNN), support vector
machines (SVM), artificial neural networks (ANN) and random forest (RF).
Borghetti et al. (2017) presented a model that maps neurological observati-
ons (EEG) to the operator’s mental workload. For the study, the RF algorithm
was chosen. Wilson et al. (2003) performed two-class classification based on
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ANN, achieving 86% of accuracy. ANN were also used in another study
(Zarjam et al., 2015), where the authors classified seven levels of cognitive
workload with features extracted on the basis of wavelet entropy, achieving
83% classification accuracy. Plechawska-Wojcik et al. (2019) performed a
three-class classification of cognitive workload based on EEG spectral data,
achieving ~91% of accuracy with kNN algorithm. In another three-class
classification, Borys et al. (2017) also reached 73% accuracy with kNN
algorithm based on eye tracking features. In the same study, based on only
EEG features, maximum accuracy of ~51% could be reached. Grimes et al.
(2008) reported 99% classification accuracy for two classes and 88% for four
classes (both results achieved for eight subjects). The study of Grimes et al.
(2008) shed light on this study in terms of showing that high classification
performance can be achieved with a small number of participants.

ANALYSIS OF MENTAL WORKLOAD

Methodology

In this study,Millisecond software which is a program that includes cognitive,
social and neurophysiological online experiments was used. In the experi-
ments, n-back tasks, which are commonly used in the literature, were applied
(Ke et al., 2015; Liu et al., 2017; Tjolleng et al., 2017). N-back memory tests
were performed at 4 different difficulty levels. As the number of “n” incre-
ases, the difficulty of the task increases. Participants are asked to keep the
letters that appear on the screen for a certain period of time in their memory,
and to press the “A” key when they see the letter M in the 0-back task, if not,
not to press any keys. In the 1-back condition, the participant was asked to
press the A key if the letter on the screen is the same as the previous one, oth-
erwise not to press any key. In the 2-back condition, a letter was the match
if it was shown two screens back. In the 3-back condition, a letter was the
match if it was shown three screens back.

Four participants (2 female, 2 male) took part in the experiment. The mean
age of the people examined was 36 years. They were not under pharmaco-
logical treatment. During the experiment, EEG waves were recorded with
EMOTIV EPOC X device. The resolution of the device is 14 bits and the
sampling rate is 128 Hz. The EPOC X device has 14 channels, and the sensor
placements according to the international 10-20 system (Homan et al, 1987)
are given in Figure 1. Recordings were started after checking contact quality
and EEG quality level.

Each session included 12 n-back blocks, 3 from each condition. The block
order was applied in such a way that the difficulty level was random. Each
letter appears on the screen for 0.5 seconds and it takes 2.5 seconds until
the next letter appears on the screen. After each block, participants were
asked to subjectively evaluate the mental workload they experienced while
performing the tests, using the NASA-TLX scale. Therefore, a participant
filled the NASA-TLX scale 12 times in total, once at the end of each block.
In addition, the participants were asked to prioritize the 6 sub-dimensions
of NASA-TLX through the pairwise comparison tables given to them. Wei-
ghted total NASA-TLX scores were obtained by using the weights obtained
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Figure 1: EMOTIV’s electrode placement (Sareen et al., 2020). (Emotive electrodes are
highlighted in green color over the 10-20 electrode system.)

as a result of 15 pairwise comparisons. In this work, we extracted for each
EEG channel the band powers of 4–8, 8–12, 12–16, 16-25 and 25–45 Hz
bandwidths by using EMOTIV Pro software. This was performed at a single
stimulus level, forming a feature vector of 5 bands× 14 channels= 70 length
for each of the 3 blocks × (15+16+17+18) stimuli = 198 sample epochs for
each subject.

Results

Statistical analysis was performed using SPSS 21.0 software. Outliers in the
data set consisting of 792 observations were removed from the data set, and
the analysis was continued with 785 observations. The Kolmogorov-Smirnov
test found all features with non-normal distribution, so the non-parametric
statistical methods were applied. Spearman correlation tests were used to
investigate whether there was a relationship between EEG variables and
NASA-TLX and task difficulty levels. As a result of the correlation tests, it
was seen that the weighted NASA-TLX score and the level of difficulty were
strongly positively correlated (rho: 0.84, p < 0.01). It was determined that
the EEG variables showing the highest correlation with the task difficulty
level were the theta waves received from the AF3, F7, FC5, FC6, F8 and AF4
channels (rho > 0.3, p < 0.01). These results show that theta power in the
prefrontal, frontal and frontal center regions increases as the task difficulty
increases. It is also observed that high beta (betaH) power in the prefrontal
and frontal regions is significantly negatively correlated with task difficulty.
Correlation tests also demonstrated that the EEG variables showing the high-
est correlation with the weighted NASA-TLX total score were theta power
in the F8 region, betaH power in the AF3 region, and gamma power in the
O1, O2, P7, F8 regions (rho > 0.3, p < 0.01). As the perceived mental wor-
kload increases, frontal theta, frontal gamma, parietal gamma and occipital
gamma increase. In contrast to theta power, betaH power in the prefrontal
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Table 1. Accuracies of classification models.

Model Accuracy for 4-class problem Accuracy for 2-class problem

kNN 0.50 0.78
SVM 0.63 0.84
ANN 0.64 0.84
RF 0.68 0.84
XGBoost 0.66 0.84
GBM 0.64 0.87
LightGBM 0.63 0.85

area decreases as perceived mental workload increases. With Kruskal Wallis
test, it was examined whether there was a significant difference between task
difficulty levels in terms of EEG variables. For 31 EEG features, statistically
significant difference was determined in at least one group distribution with
the significance level of 1%. It was also revealed that 23 EEG features diffe-
red at 99.9% significance level according to difficulty levels. When the rank
values of the variables were examined, AF3-theta, AF3-betaH, F7-theta, F3-
betaH, FC5-theta, O2-gamma, P8-gamma, FC6-theta, F8-theta, AF4-theta
variables were observed to increase or decrease smoothly according to the
task difficulty changes. In the observations corresponding to the high task
difficulty level, it was observed that the theta power in the frontal and fron-
tal central line was higher, the high beta power in the same regions was lower,
and the gamma power in the parietal and occipital areas was higher.

In the stage of constructing the model estimating mental workload level
by using EEG data, Python 3.8 software was used. Machine learning algo-
rithms were applied to obtain the classification model that determines task
difficulty level most accurately according to the EEG features. For modeling,
kNN, SVM,ANN,RF,GBM,LightGBM and XGBoost algorithms were used.
Accuracy was calculated for each model in which 70 EEG features were con-
sidered as independent variables and “Task Difficulty Level” consisting of 4
classes as dependent variable. The algorithm that gave the best result was the
RF with an accuracy rate of 68% (see Table 1). In other words, the class of
68% of all observations in the test data was correctly predicted. In the tuning
step of the RF model, different hyper-parameters were tried to achieve the
best result. When the number of maximum features is 4, minimum samples
for split is 2 and the number of trees is 500, 68% success has been achieved.
When the confusion matrix was examined, it was seen that the misclassifica-
tion estimation occurred mostly between 0-1 and 2-3 classes. A total of 12
errors were made in the 0-1 class predictions made by the model, and a total
of 22 errors were made in the 2-3 class predictions. In order to investigate
how reducing complexity of the problem with fewer classes would affect the
results, the observations in the 0-1 class and the 2-3 class were combined
and the models were retested. In the 2-classes prediction model, in which the
mental workload can be evaluated as low and high, the accuracy of 87%was
reached with GBM algorithm (see Table 1). The model correctly predicted the
classes of 171 of 197 randomly selected observations as the test data set.
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Figure 2: Importance levels of EEG features (x: importance scores, y: features).

When the feature selection method embedded in the RF algorithm was
applied, the variable priorities were listed as in Figure 2.

In this figure, the most important 15 EEG features were given according
to RF algorithm. Prefrontal, frontal and center frontal theta, prefrontal beta-
high, frontal, temporal, parietal and occipital gamma and occipital alpha
activities were found to be the most important parameters contributing to
modeling the estimated mental workload levels.

CONCLUSION

In this paper, we used n-back task inducing four different levels of workload
to investigate workload discrimination using EEG signals. The outcome of
the study provides the fact that increased task difficulty determines the rise
of theta activity in prefrontal and frontal regions. Especially frontal theta
power and parietal and occipital gamma power were found positively related
to perceived workload scores obtained via NASA-TLX. Prefrontal beta-high
activity is, on the other hand, negatively related to self-assessment workload
ratings. The Kruskal-Wallis analysis of ranks indicated the statistically signi-
ficant difference in at least one group distribution for 31 EEG features with
the significance level of 1%. The Random Forest algorithm achieved the high-
est accuracy (~68%) for 4-class classification problem. We observed that,
prefrontal and frontal theta, prefrontal beta-high, occipital, parietal and tem-
poral gamma and occipital alpha activities are the most important parameters
contributing to model performance. Further, maximum accuracy of ~87%
was reached with 2-class-based (low and high mental workload) estimation
model along with GBM algorithm. From our study, it may be noted that, EEG
signals alone play an important role in estimation of mental workload. Ano-
ther remarkable result is high classification performance of GBM, LightGBM
and XGBoost algorithms, which have been developed in the recent past and
therefore not frequently used in studies on this subject in the literature. This
result supports the use of these algorithms in studies to be conducted in
this field. However, it is considered that further improvement can be achi-
eved both with the increase in the number of observations and with detailed
analysis to be made by testing different feature and hyper-parameter subsets.
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