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ABSTRACT

Stress often is associated with physical and mental health issues. To prevent these
issues, an early detection of stress is essential. However, for people with an intellectual
disability effectively expressing stress can be difficult and therefore, the necessary
intervention can be delayed. An automatic stress detection system could help care-
givers in early detection of stress development. This can be achieved using wearable
sensors that continuously record physiology. The changes in physiological signals,
like in skin conductance can be used to classify moments of stress. The devices recor-
ding these signals are however, not always suitable for long term measurements.
The present study evaluates a newly developed sock integrated skin conductance sen-
sor (SentiSock) that does not restrict movement and stays comfortable over time. To
assess if the sensor can be used for stress detection a comparison was made with the
Empatica E4, a commonly used wrist-based skin conductance sensor. Both sensors
were worn by 28 participants (mean age 39.25 ± 17.04) in a lab study where stress
was induced using mathematical exercises. The data was used to train a multitask
learning neural network for each device, following an identical procedure. The models
were validated using a 5-fold cross validation that resulted in an average balanced
accuracy of 0.824 (SD = 0.018) for Empatica E4 and 0.834 (SD = 0.019) for SentiSock.
This demonstrated that both sensors can be used to detect stress adequately in lab
conditions. Given these results, SentiSock will be further investigated for long term
measurements.
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INTRODUCTION

With a prevalence close to 30 percent in the general population in recent
years, stress affects many people in society (Salari et al., 2020). Stress does not
only affect one’s mental health but also has implications for physical health
(Cohen et al., 2007). It is therefore, highly important to detect stress in early
stages to reduce the impact it may have on an individual. This may be espe-
cially true for people unable to express their stress effectively, for example
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people with a severe intellectual disability (Doodeman et al., 2022). Further-
more, stress in people with limited communicative abilities can express itself
as challenging behavior (Scott and Havercamp, 2014), resulting in a redu-
ced quality of life (Gur, 2016) and increased stress and burden in caregivers
(Panicker and Ramesh, 2019). It is, therefore, important to detect the early
built-up of stress automatically to ensure a timely response to changes in the
patients’ well-being. This may be achieved using technological solutions that
allow for continuous monitoring of stress.

There are numerous ways to automatically detect stress (Gedam and Paul,
2021). While many methods have shown promising results, for a successful
implementation of the technology in daily life, a method that does not limit
persons’ freedom of movement is required. A widely used solution is the
use of wireless wearable devices. For stress detection, sensors that record
physiological signals are most commonly used. This is due to the strong
relation between physiology and psychological stress (Giannakakis et al.,
2019), especially for electrodermal activity (EDA). EDA refers to the electric
conductivity of the skin. During stressful episodes EDA amplitude increa-
ses together with the drastic increase in the number of peaks in the signal
(Boucsein, 2012).

EDA is a signal that can be recorded at many locations on the body. How-
ever, not all body locations give the same measurement quality. The best
locations to record EDA are at the fingertips, hand palm, forehead and foot
(Dooren et al., 2012). The current available sensors generally measure EDA
on the wrist, although this is found to be a suboptimal location (Dooren
et al., 2012). The main motivation to record EDA at the wrist is that it causes
minimal inconvenience and restrictions for the subject. The free movement
may, however, introduce more movement artefacts, reducing the effectivity
of these sensors in tasks that require movement of the upper body. In these
cases measurement of EDA on the foot may result in a better performance
(Liu and Du, 2018).

There is a clear relation between emotional state and EDA measured on
the foot (Dooren et al., 2012; Frederiks et al., 2019; Liu and Du, 2018).
However, using current approaches it is uncomfortable to record EDA on
the foot. It has been suggested to integrate an EDA sensor into a sock to
tackle this issue (Liu and Du, 2018). While there have been several studies
that integrated an EDA sensor into a sock (Frederiks et al., 2019; Healey,
2011), no viable solution exists so far. To investigate the feasibility of a sock
with integrated EDA sensor for stress detection, the present study evaluates a
newly developed sensor integrated wearable called the SentiSock (Mentech,
Eindhoven, the Netherlands). This sensor was designed for stress detection
in people with an intellectual disability or dementia.

A lab study with stress-inducing experiments was designed to evaluate the
stress detection capability of the SentiSock in healthy participants. By com-
paring the SentiSock to the wrist-based EDA sensor Empatica E4 (Empatica
Inc, Boston, United States of America), the study aims to demonstrate the
accuracy and capability of the sock-integrated EDA sensor for stress dete-
ction. This will serve as a first step into the direction of stress detection for
people with special needs.
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DATASET

A within-subject lab experiment was used to determine the relation between
subjective and physiological stress. First, three baseline measurements were
performed: sitting, standing, and walking while watching a neutral video for
5-minutes each. Then, participants experienced three counterbalanced con-
ditions (sitting, standing, and walking), which consisted each of a 5-minute
arithmetic task followed by a 5-minute neutral rest period. During the arith-
metic task, participants had to solve equations and add the individual digits
of that solution under time pressure. The task was designed to elicit stress
by adding feedback sounds and a ticking digital clock that changed color.
The video shown during the baseline and rest periods was the Windows “3D
Pipes” screensaver. After completion of the three conditional tests, the parti-
cipants were exposed to a cold pressor test (CPT) to induce physical stress.
During the CPT participants immersed their dominant hand in cold water
(2-5°C) for a maximum of 3 minutes. At the end of the complete experi-
ment, the participants were asked to fill in a questionnaire containing items
on demographics (gender, age, etc.) and health conditions (medication use,
health problems, exercise, etc.). The total duration of the experiment was
75 minutes. The experiment was carried out in a controlled environment in
the lab of Mentech in Eindhoven.

Real-time physiological responses were measured by multiple wearable
devices: skin conductance on both feet with the SentiSock, and on the wrist
using the Empatica E4. After each task or rest period, subjective emotio-
nal responses were measured using the 3-item SAM-scale (Bradley and Lang,
1994).

For this experiment, participants were recruited using convenience sam-
pling; either through the researchers’ personal network or volunteering
networks such as ‘NLvoorelkaar’ and ‘EindhovenDoet’. Given the changes
in physiology when aging, the study explicitly aimed to include people from
all ages. Participation was voluntary, and an informed consent was given
prior to participation. Participants were given a small gift for their partici-
pation (i.e., water bottle). The data were collected between 01-11-2021 and
10-02-2022.

MODEL DEVELOPMENT

Procedure

To investigate the performance of the SentiSock for stress detection, two
models were trained. One model used the SentiSock EDA data, while
the other model used the Empatica E4 EDA data. The models were trai-
ned using the following general procedure, further explained in the fol-
lowing sections. First, a data cleaning step was conducted. Subsequently,
EDA features were extracted for both datasets, followed by a feature sele-
ction procedure. The models were compiled using the same architecture
and trained using an identical validation scheme. The procedure was kept
identical to avoid any factors other than the sensors from affecting the
performance.
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Data Cleaning

The first step was to exclude data that was not suitable for model training.
Data was excluded based on two criteria. All periods with corrupt Empatica
E4 or SentiSock EDA signal were excluded. Additionally, all participants who
did not experience both stressful and non-stressful states, as indicated by their
SAM scores, were omitted. The SAM scores were binarized, by labeling values
larger than 5 were as moments of stress, and below 5 as rest. Following the
feature extraction, the feature dataset samples with identical or invalid values
(e.g. not a number, or infinity) were removed and a minimum 30 examples
per class per person were required to include the features in the study.

Feature Extraction

The features were calculated from the raw EDA signal. All features were
calculated using a sliding window of 20 seconds with an overlap of 10
seconds. In total, 30 features were extracted. All features were based on the
statistical and temporal sets in the TSFEL Python package (Barandas et al.,
2020). These features were extracted for EDA signal from both the Empatica
E4 and the SentiSock.

Feature Selection

The features were selected using the variance influence factor (VIF) (Witten,
2013). This factor represents the multicollinearity of the features, indicating
which features do not add new information and may be removed. Features
with a VIF greater than 5 were excluded. This procedure was applied for
both SentiSock and Empatica E4. For SentiSock a total of 9 features were
included, while for Empatica E4 10 features were included.

Model Architecture

The selected model used a multitask learning (MTL) neural network based on
people-as-tasks (Jaques et al., 2016; Taylor et al., 2020). In this architecture,
a shared layer represents the general physiological changes related to stress,
while the task (or personal) layers represent the person specific physiological
changes related to stress.

The shared layer of the model consisted of 30 neurons and used Swish acti-
vation. Each personal layer had 10 neurons and also used Swish activation.
The output of each personal layer used sigmoid activation. The model was
compiled using an Adam optimizer with a learning rate of 0.0001 and used
the binary cross-entropy loss function.

Model Validation

The models were validated by calculating a set of performance metrics from
the output associated with the person. Since each person has their own per-
sonal layer, it was investigated how the model performs on new data from
a person on their own personal layer. The calculated metrics included the
f1-score, sensitivity, specificity, and balanced accuracy. To use all available
data a 5-fold cross-validation was used. To ensure that each person was
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Table 1. 5-fold cross validation results (mean ± SD) for SentiSock and Empatica E4
models.

Model f1-score Sensitivity Specificity Balanced Accuracy

SentiSock 0.843 ± 0.017 0.813 ± 0.025 0.855 ± 0.022 0.834 ± 0.019
Empatica E4 0.832 ± 0.022 0.807 ± 0.022 0.840 ± 0.033 0.824 ± 0.018

well represented in each fold, the folds were created separately for each per-
son. Afterwards the mean of the different folds was taken to evaluate the
performance of the model.

RESULTS

In total, 51 participants completed the whole experiment. After the data cle-
aning, a sample of 28 participants remained for the analysis (20 males and
8 females; mean age = 39.25, SD = 17.04, range = 22–69). In total 12 parti-
cipants were excluded because they did not experience both stress and restful
periods as indicated by their SAM scores. Four participants were excluded
because of missing Empatica E4 recordings, that were either corrupt or not
recorded. Additionally, five participants were removed because of invalid fea-
tures from the Empatica E4 recording. The remaining excluded participants
did not have at least 30 examples for both rest and stressful moments.

The results of the model validation using a 5-fold cross-validation on the
Empatica E4 and SentiSock EDA are shown in Table 1.

DISCUSSION

The present study evaluated the performance of the SentiSock, a sock-
integrated EDA sensor for stress detection, by comparing its stress detection
capability with that of the Empatica E4, a widely used wrist-based sensor.
The Empatica E4 and the SentiSock model both performed high on f1-score,
sensitivity, specificity and balanced accuracy. The performance of the Sen-
tiSock model was in line with previous research on foot-based sensors (Liu
and Du, 2018). The present study illustrated a negligible difference in perfor-
mance of the stress detection models between the two sensors. Interestingly,
the suboptimal location of the wrist for EDA measurement (Dooren et al.,
2012), did not lead to lower performance. The choice to use a foot-based or
wrist-based EDA sensor may therefore, be more driven by the application or
use-case. For example, daily use in a care setting for real-time stress detection
requires a comfortable sensor that can be integrated in the daily care process
(Poh et al., 2010). The wrist-based sensors use metal studs to capture the
skin conductance. These studs press into the skin and eventually may lead
to bruises and skin damage (Jackson et al., 2019). On the contrary, a sock-
integrated sensor consists of printed electrodes and electrode pads that feel
comfortable and seamlessly integrate with the garment of the sock. Future
studies should examine the user-friendliness, acceptability and applicability
of the sock-integrated sensor in clinical practice with people with cognitive
and communication impairments.
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While the study demonstrated that both Empactica E4 and SentiSock can
be used to detect stress, it should be noted that the models were trained and
validated with lab experiments. The lab experiment did not induce stress in
all volunteers , which largely explains the number of excluded participants.
Furthermore, additional samples were omitted due to missing or corrupted
data from the Empatica E4, which may have been caused by the streaming
platform that was used. Due to the validation through a lab experiment, it
was not possible to assess the performance under daily-life conditions, diffe-
rent types of stress, and how the system would perform over long periods of
time. To conclude a sock-integrated EDA sensor is viable for stress detection.
Future studies should validate the sock-integrated sensor for stress detection
in long term care.

CONCLUSION

The current study demonstrated the capability of stress detection with a sock-
integrated EDA sensor. The performance of the sensor was evaluated with a
neural network model, trained with labeled physiological responses to emoti-
onal data of 28 test persons. The stress metrics obtained from the foot-sensor,
including the f1-score, balanced accuracy, sensitivity, and specificity, were
comparable with the stress metrics obtained from the wrist-sensor. The high
balanced accuracy of 0.834 demonstrates the capability of accurate stress
detection. Furthermore, a sock-integrated EDA sensor may be more comfor-
table to wear than the wristband. This will be especially relevant in cases
where the sensor will be worn for long periods of time, like in continuous
stress detection. Additionally, the added comfort may help in target groups
that may not accept noticeable, uncomfortable or restrictive wearables.
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