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ABSTRACT

Trust in automation is seen as a core factor affecting human-automation teaming. Inap-
propriate calibration of trust in automation can damage the performance and safety
goals of the collaborative team. It is essential to develop automation that can cor-
rectly calibrate human trust in it. Herein, based on the view that trust comes from
interaction, we use an instance-based learning cognitive model to obtain the cognitive
process involved in the interaction between dispatchers and automated Decision Sup-
port Systems (DSSs) in the Fully Automatic Operation (FAO) circumstances, and obtain
from the model an internal estimate of the calibration state of human trust. We consi-
der integrating the model into automation so that it can judge the hidden calibration
status of the human teammate’s trust, and respond to the trust dynamics in an online
and adaptive way. We discuss our results and the potential of the instance-based
computational cognitive process model to improve human-automation teaming. Our
model has great potential to avoid the sluggish effect caused by dispatchers failing to
obtain effective decision support in time in the FAO circumstances, especially when
dealing with emergencies under high time pressure.
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INTRODUCTION

With the rapid development of rail transit, the FAO system has become a hot
research topic in the current urban rail transit field. In the FAO circumstances,
the train will be unmanned, the driver’s responsibilities will be replaced by
the system, and the emergency response level of the system will depend more
on the remote operation of dispatchers (Commission, 2006). In some critical
decision-making tasks, because raw data about the state of the system is not
available to the dispatcher, or because the function of the system is opaque
and unclear to the dispatcher, DSSs can be used by highlighting relevant areas,
providing suggestions and the direction of action, and even in some cases
executing it for the operator, helps supplement or clarify information already
available to the dispatcher (Madhavan and Wiegmann, 2007), therefore, the
FAO dispatcher work in teams with the DSSs to ensure the safe operation of
the train.
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Trust in automation has been identified as a key factor in mediating the
relationship between human operator and automation (Lee and See, 2004;
Hoff and Bashir, 2015) and the operator’s trust in automated team members
often has a significant impact on the decision-making process of the human-
automation team (Drnec et al., 2016). Due to the safety-critical nature of the
FAO system, the issue of trust in automation is likely to become a bottle-
neck that limits the performance of the system and impairs the security of the
system. It is crucial to develop DSSs that can calibrate the dispatchers’ trust
in them appropriately.

For the development of trustworthy automation, traditional work focuses
on studying the antecedents and consequences of trust in automation, impro-
ving automation design statically (Schaefer et al., 2016). However, trust in
automation is not a static phenomenon—trust fluctuates dynamically as the
interaction unfolds over time, and the design’s efficacy is often dependent on
the context and individual differences among human operators. To resolve
this issue, recent work has tended to empower automation reasoning abi-
lity through methods such as probabilistic modeling (Xu et al., 2015; Akash
et al., 2018; Akash et al., 2019a; Akash et al., 2019b), to develop strategies
for automation to proactively acquire, calibrate, and maintain the human
teammate’s trust. However, a strong limitation of most of them is their inabi-
lity to continuously and dynamically learn from experience and, thus, update
the rules of learning.

A large number of related literatures show that existing conceptual the-
ories (Lee and See, 2004) and computational modeling work (Akash et al.,
2017; Hu et al., 2018) of trust in automation have reached a consensus:
the operator’s calibration of trust and reliance is the result of learning and
memory from the experience of the automation technology or system. As
a learning theory related to dynamic decision-making, Instance-Based Lear-
ning (IBL) can well explain the dynamic development mechanism of trust
from the perspective of cognitive structure (Gonzalez et al., 2003). IBL argues
that in dynamic decision-making, people learn through the accumulation and
refinement of instances, which contain situations, actions, and utility of deci-
sions. When decision makers interact with dynamic tasks, they learn based
on the similarity of the situation to past instances to identify situations, adjust
their judgment strategies from heuristic-based to instance-based, and refine
accumulated knowledge based on feedback on the outcomes of their actions.

Therefore, this paper constructs the Dispatching Multitasking Trust Para-
digm (DMTP), studies the dynamic change process of dispatcher’s trust in
automation in the FAO circumstances, builds a computational cognitive
model of trust based on IBL theory, captures the dynamic changes of trust,
and take the first step to create adaptive trust management to improve the
efficiency and safety of FAO metros.

The Human-Automation Teaming Task

According to the investigation of Yanfang Line of Beijing Metro dispatching
operation and related case study (Balfe et al., 2018), the dispatching work can
be summarized into the following four categories: monitoring, intervention,
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Figure 1: The main components of DMTP, where the planning task is a gridworld-based
path planning task, and the communication task is an auditory 2-back task.

planning, and communication. On this basis, we developed DMTP, the basic
components of which are shown in Figure 1.

In DMTP, we can examine the underlying cognitive processes underlying
dispatcher trust decisions in the presence of DSS unreliability. In DMTP,
subjects will play the role of dispatchers, performing monitoring tasks and
handling dangerous situations. The subjects were asked to detect and judge
whether the abnormal signal was safe or dangerous. To make this decision,
they took advice from a DSS. The system will prompt the subjects that the
abnormal signal may be a danger signal. However, the DSS recommendati-
ons are not necessarily correct, false positives (declaring a safety signal as
dangerous) and false negatives (declaring a danger signal as safe) may occur.
Therefore, subjects’ trust in the DSS fluctuates with its performance, which
allows us to explore the trust dynamics of subjects as they interact with the
DSS.

The goal of the subjects is to detect abnormal signals in the shortest pos-
sible time, judge whether the abnormal signals are dangerous signals, and
solve the dangerous events by processing the planning task, so as to opti-
mize their task performance. Among them, the subjects interact with DSS
with different reliability in each block. If the subjects can detect abnormal
signals, make correct trust decisions, and successfully complete the planning
task of solving dangerous events, they can obtain three scores corresponding
to the reward and penalty values associated with each task in various tasks
(signal detection task, trust decision task, and planning task), and lose points
otherwise.

When making trust decisions, subjects can view information describing the
reward and penalty values for eachDSS (we assume that during the reconnais-
sance phase before anomalous signal processing, the dispatcher can observe
and obtain as much information as possible about the reliability of the DSS).

At the end of each trial, subjects were asked to explicitly indicate their level
of trust in the DSS using a 7-point Likert scale (1: distrust, 7: trust), with a
score of 4 indicating moderate trust, or there is no inclination.
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Cognitive Model of Trust Decision

In IBL, decisions are made by generalizing about past experiences or instances
that are similar to the current situation. Typically, experiences are encoded as
chunks in declarative memory, containing attributes that describe the context
of each decision, the decision itself, and the outcome of the decision. In this
model, the context attributes include whether the DSS cue is present (present
or absent), the reward value (ranging from 0 to 10), the penalty value (ran-
ging from 0 to 10), and the possible decision to trust or distrust. The result
is the actual score based on the action. In a given situation, for each possi-
ble decision, the relevant utility (i.e., the expected outcome) is computed by
blending: the average of past outcomes weights the probability of memory
retrieval, which depends on contextual similarity to past instances. Make the
decision with the highest expected outcome.

The cognitive model is implemented in the ACT-R cognitive archite-
cture(Anderson et al., 2004) and follow the IBL approach for decision
making(Gonzalez et al., 2003). According to the blending mechanism of
ACT-R, the retrieval of past instances is based on the activation strength of
relevant instances in memory and their similarity to the current context. The
activation Ai of instance i is determined by:

Ai = log

 n∑
j = 1

t−dj

 + εi (1)

where, tj is the time since the jth occurrence of instance i, d is the decay rate
of each occurrence, set to the default ACT-R value of 0.5. εi is the transient
noise, a random value from the logistic distribution, whose mean value is 0
and the variance parameter s is 0.25(common act-r value), which introduces
randomness into the retrieval.

Relevant memories are retrieved in specific contexts by combining their
activation and relevancy to calculate their match scores:

Mi = Ai +

l∑
j = 1

MP× Sim
(
dj, vij

)
(2)

where, Sim(dj, vij) is the similarity between the current context element (dj)
and the corresponding context element (vij) of the instances in memory, and
similarities between numerical slot values are computed on a linear scale from
0.0 (exact match) to−1.0(largest difference), the symbolical value is either an
exact match or the largest difference. MP is mismatch penalty (set to ACT-R
default of 1.0).

The IBL model uses the blending mechanism of ACT-R to generate expe-
cted outcomes of possible actions based on similarity to past instances. The
desired result is the value V that best satisfies all constraints that match insta-
nce i, weighted by the probability of retrieval, where satisfaction is defined
as minimizing the dissimilarity between the consensus value V and the actual
answer Vicontained in instance i:
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V = argmin
Vj

k∑
i = 1

Pi × Sim
(
Vj, vij

)2 (3)

where, V is the consensus value in the possible value set Vj, Pi is the proba-
bility weight of memory i, and its matching scoreMi is reflected through the
Boltzmann softmax distribution.

Pi =
e
Ai
t∑

j e
Ai
t

(4)

The temperature parameter t can be used to scale the probability according
to the activation, i.e. low temperature results in a larger proportion assigned
to the highest activation instance, while high temperature results in a more
randomly distributed proportion, regardless of the activation strength. The
current model sets the temperature to 1.0, which results in retrieval probabi-
lities that reflect the original probability distribution, not biased towards or
against the most active instances.

In summary, results from past instances are weighted by their recency, fre-
quency, and similarity to the current instance (i.e., the probability of memory
retrieval) to produce an expected result by blending. The corresponding trust
action is made according to the generated expected result.

CONCLUSION AND FUTURE WORK

The current method is an initial attempt to solve the problem of FAO dispa-
tchers’ trust in automation. Studying trust from the perspective of cognitive
structure can not only integrate various empirical findings in the trust litera-
ture, but also understand the relationship between trust and other cognitive
mechanisms and phenomenon.More importantly, cognitive models are gene-
rative, in the sense that they actually make decisions in a human-like manner,
based on their own experience, rather than being data-driven and requiring
a lot of training set. Therefore, after conducting experiment with professi-
onal FAO dispatchers and DMTP to verify the validity of the constructed
model, the future work considers equipping the cognitive model in the auto-
mated DSS, to deliver the right information at the right time to dispatchers
based on their trust needs, improving the accuracy of dispatcher trust cali-
bration, and developing human-automation teaming that facilitates more
effective automated DSSs. In addition, whether the model’s ability to predict
dispatcher trust calibration can be generalized to less constrained dispatching
environments requires further exploration.
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