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ABSTRACT

It is known that human influential factors (HIFs) such as the sense of presence, immer-
sion, attention, stress, and engagement levels play a crucial role in the gamer’s
perceived immersive media experience. To this end, recent research has explored the
use of affective brain-/body-computer interfaces to monitor such factors. Typically, stu-
dies have been conducted in laboratory settings and have relied on research-grade
neurophysiological sensors. Transferring the obtained knowledge to everyday set-
tings, however, is not straightforward, especially since it requires cumbersome and
long preparation times, which could be overwhelming for gamers. To overcome this
limitation, we have recently developed an instrumented VR headset which directly
embeds a number of dry ExG sensors (electroencephalography, EEG; electrocardio-
graphy, ECG; and electrooculography, EOG) into the head-mounted display (termed
iHMD). More recently, we have also developed a companion software to allow for use
and monitoring of the device at the gamer’s home with minimal experimental supe-
rvision, hence exploring its potential use truly “in the wild”. The iHMD, VR controllers,
and two laptops, along with a copy of the Half-Life: Alyx videogame were dropped
off at the homes of eight gamers who consented to participate in the study. All public
health COVID-19 protocols were followed, including sanitizing the iHMD in a UV-C light
chamber and with sanitizing wipes 48h prior to dropping the equipment off. Instructi-
ons on how to set up the equipment and the game, as well as a google form with a
questionnaire to be answered after the game with questions related to user experie-
nce were provided via videoconference. The researcher remained available remotely
to monitor signal quality and in case any participant questions arose, but otherwise,
researcher interventions were minimal. The participants were asked to play the game
for around 1.5 hours. This paper details the obtained results from this study and shows
the potential of measuring HIF metrics from ExG signals collected “in the wild,” as well
as their use in remote gaming experience monitoring. In particular, we will show the
potential of measuring gamer sense of presence, immersion, and emotion from the
collected signals. The next steps will be to use these signals and inferred HIF metrics to
adjust the game in real-time, thus maximizing the user experience for each individual
gamer.
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INTRODUCTION

Restrictions from the COVID-19 pandemic have disrupted research activi-
ties in the university setting, forcing students and researchers to work from
home. This has particularly disrupted research involving human data colle-
ction. As such, new protocols had to be quickly deployed to allow for remote
experiments. While this can be easily done with experiments requiring only
subjective rating data collection (e.g., provide an engagement rating after pla-
ying a new game), it can be particularly challenging if the research involves
the use of hardware, such as virtual reality head-mounted displays (HMD) or
neurophysiological signal monitors (e.g., smartwatches or brain-wave moni-
toring headbands). This is true because such experimental protocols require
close inspection by a trained experimenter to assure the devices are worn
properly, that the signals are of usable quality, that sensor impedances are
within operable ranges, and within the scope of a pandemic, that the devices
are properly sanitized and quarantined between users. Passing these tasks on
to the user would be overwhelming and beyond the scope of their consent
to participate. As such, a different methodology is needed. This is where this
paper come in.

In this paper, we describe our proposed setup to collect multimodal neuro-
physiological data while users play a virtual reality game at home in order
to build models of the overall gameplay experience. To achieve these goals,
several innovations had to come together. First, an instrumented “plug-and-
play” HMD (henceforth termed iHMD) (Cassani et al., 2020) was needed
which directly embeds a number of dry ExG sensors (electroencephalogra-
phy, EEG; electrocardiography, ECG; facial electromyography, EMG; and
electrooculography, EOG) into the HMD. A portable bioamplifier is used to
collect, stream, and/or store the biosignals in real-time. Moreover, a softw-
are suite was developed to automatically measure signal quality (Tobon V
et al., 2016), to enhance the biosignals (dos Santos et al., 2020; Rosanne
et al., 2021; Tobon and Falk, 2018), and to extract relevant human influen-
tial factors (HIFs) from the post-processed signals (e.g., Moinnereau et al.,
2020; Tiwari and Falk, 2021). The iHMD was dropped off at the partici-
pant homes and via a dedicated videoconference link, the experimenter had
access to real-time ratings of signal quality and could instruct participants if
any changes were needed. Signals and HIFs were recorded and uploaded to
an accompanying laptop for future analysis. Devices were then picked up,
sanitized, quarantined, and dropped off to the next participant.

Development of the iHMD was motivated by the fact that HIFs (e.g.,
sense of presence/immersion; attention, stress, engagement; fun factors) are
known to play a crucial role in the gamer’s perceived immersive media expe-
rience (Perkis et al., 2020). Recent research has explored the use of affective
brain-/body-computer interfaces to monitor such factors (Gupta et al., 2016).
Traditionally, subjective methods have been utilized, which rely on post-
experience questionnaires, such as the sense of presence (Witmer and Singer,
1998). Subjective tests, however, can be highly biased, lack temporal resolu-
tion, and are performed after the immersive application is finished, thus rely
on gamer memory to recall events. Monitoring HIFs in real-time requires
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objective methods and physiological signals have proven to be particularly
effective. For instance, stress, engagement, emotions, sense of presence,
immersion, and overall experience have been monitored from EEG, ECG,
and EOG signals (Dehais et al., 2018). As virtual reality and the metaverse
are projected to boom in the coming years, being able to objectively quan-
tify user experience in immersive settings will be crucial and automated HIFs
measurement will be needed to enable real-time user experience optimization
on a per-user basis.

The remainder of this paper is organized as follows. In the Materials and
Methods section we describe the iHMD development, the at-home drop-off
protocol, and signal acquisition method. Next, in the Experimental Results
and Discussion section we present the results obtained from the biosignal
and HIFs analysis and their use in measuring overall player experience and
compare to existing literature. Lastly, Conclusions are presented.

MATERIALS AND METHODS

In this section, we detail the experimental procedure followed, including data
collection, signal pre-processing, analysis and HIF metric measurement.

iHMD integration

We have recently developed a fully portable and wireless solution that inte-
grates several physiological sensors on any off-the-shelf VR headset. In this
study, we integrated sensors on an HTC VIVE Pro Eye VR headset. It is a
PC-powered VR headset, released in 2019 and has the following features:
98° field-of-view, 1440x1600 per eye resolution, 90 Hz refresh rate, and 6
degrees-of-freedom tracking. It offers increased visual resolution and spatial
sound to enhance the immersion and improve the gameplay experience. An
OpenBCI bioamplifier, including the Cyton and Daisy boards (Open BCI,
USA), was used to record sixteen fully-differential input channels to record
EEG, EOG, and ECG signals. We proposed to acquire 11 EEG signals from
dry electrodes located in three areas: frontal (Fp1, Fpz and Fp2), central (F3,
F4, FCz, C3 and C4), and occipital (O1, Oz and O2), as shown in Figure 1.
The EOG signals were derived from the EEG electrodes on the frontal area,
as well as two vertical and two horizontal electrodes (H EOG right, H EOG
left, V EOG right, and V EOG left), all embedded directly into the foam of the
VR headset. Moreover, one disposable electrode was placed on the user’s col-
larbone for ECG recording. Signals were acquired at a sampling rate of 125
Hz. Lastly, two earclip electrodes were used as references on each lobe. Data
was streamed wirelessly using the standalone OpenBCI Graphical User Inter-
face (GUI) to a laptop that was also dropped off at the user’s home alongside
the iHMD.

Remote Data Collection

Eight participants consented to take part in this experiment (5 male and 3
female, 28.9 +/− 2.9 years of age) which received Ethics approval by the
INRS Ethics Committee. A box was placed in front of the participant’s home
at a mutually-agreed time including two laptops and the iHMD. One laptop
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Figure 1: Proposed 16-ExG electrode configuration embedded into the HTC VIVE pro
eye.

was used to display the VR content and the other was used to record the stre-
amed biosignal data. Gameplay and real-time signal quality monitoring was
achieved through the “Teamviewer” platform and a dedicated videoconfere-
nce session. Instructions on how to set up the gaming environment, how to
wear the iHMD, as well as how to play the game: Half-life Alyx were given
live via the videoconference call. Participants went through two conditions,
which we term (1) baseline and (2) exploration/fight. The baseline corre-
sponds to the first two chapters of the game (about 30 minutes of gameplay).
Here, the player discovers the game world and learns to navigate and interact
with objects. The second exploration/fight condition corresponds to subse-
quent phases that alternate between exploration and fight where the player is
confronted with puzzle solving and fighting challenge phases (about 1 hour
of gameplay). At the end of these two sessions, participants were asked to
fill a unified user experience questionnaire via a Google form. The unified
questionnaire combined 87 different items, compiled from 10 different sca-
les measuring the gamer’s sense of presence, engagement, immersion, flow,
usability, skill, emotion, cybersickness, judgement, and technology adoption.
Eighty-four such items used 10-point Likert scale and three were open que-
stions. Once the two sessions were completed, participants were asked to put
everything back inside the box. Once the box was collected by the experi-
menter, the cleaning and disinfecting phase would start. All VR equipment,
the iHMD electrodes, and the two laptops were thoroughly disinfected with
alcoholic wipes. The iHMDwas disinfected using a Cleanbox UV-C chamber
built specially for VR headsets. Upon sanitation, the iHMD stayed in quaran-
tine in the chamber for 24 hours and outside the chamber for another 24h.
After 48h of quarantine, all the material was ready to be boxed up again and
delivered to the next participant.

Pre-Processing and HIF Features Extraction

As mentioned previously, all the biosignals were streamed and stored to one
of the laptops for posterior analysis. Here, signal processing was performed
using MATLAB in combination with the EEGLab toolbox. For EEG, signals
were first band-pass filtered between 0.5 and 45 Hz and then zero-mean
normalized. Motion-related artifacts were automatically removed using the
Artifact Subspace Reconstruction (ASR) algorithm available in EEGLab.
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Signals were segmented into quarter-second windows with 50% hops. As we
are interested in measuring HIFs, several EEG metrics described and widely
used in the literature were tested, namely: the engagement index (EI), arousal
and valence, and frontal alpha asymmetry (FAA). The engagement index EI
was calculated as the ratio of the beta-band (12-30Hz) EEG power to the
sum of the alpha-band (8-12Hz) and theta-band (4-8Hz) EEG powers from
Fp1 (Coelli et al., 2015; Nuamah et al., 2017). As we are also interested in
the emotion states of the gamer, arousal levels were measured using the (beta
power (electrode F3) + Beta power (F4) ) / (alpha power (F3) + alpha power
(F4 )) ratio while valence wasmeasured via the (alpha power (F4) / beta power
(F4) ) - (alpha power (F3) / beta power (F3)) ratio, as proposed by (Mcma-
han et al., 2015). Valence corresponds to the level of pleasantness, whereas
arousal measures how calming or exciting the stimulus is. Moreover, engage-
ment and arousal indexes have been shown to also measure immersion levels
(Mcmahan et al., 2015). Finally, we explored FAA as an additional index of
pleasantness; its calculation is given by the log-power of alpha EEG band in
electrode F4 subtracted by the log-power of the alpha band from electrode
F3. A positive FAA index reflects greater left-sided frontal activity and may
serve as an index of approach motivation or related emotion (e.g., anger and
joy); whereas negative values indicate greater right-sided activity and may
serve as an index of withdrawal motivation or related emotion (e.g., disgust,
fear, and sadness) (Fischer et al., 2018).

For ECG signal processing, in turn, an open-source MATLAB toolbox was
used to extract heart rate (HR) measures (OK, 2022). Experiencing emotio-
nal or physical stress may cause an increase in HR and, consequently, impact
the user experience. Finally, from EOG signals we extracted eye blink and
saccade measures using the EOG Event Recognizer Tool toolbox (Toivanen
et al., 2015); these could be indicative of user frustration. Eye blinks have
also been shown to be useful in predicting cybersickness (Dennison et al.,
2016). EOG signals were first band-pass filtered between 0.1 and 60 Hz and
then zero-mean normalized. An ASR algorithm was also applied to remove
some motion-related artifacts while keeping the eye blinks and movements
intact. The blinks and saccade measurement algorithm relies on a probabili-
stic method that requires a short period of unsupervised training before the
actual measurements. To this end, we considered the first 60 seconds of each
session for each participant. The parameters of the Gaussian likelihoods were
learned using an expectation maximization algorithm (Toivanen et al., 2015).

RESULTS AND DISCUSSION

Subjective Ratings

To compare the baseline and exploration/fight conditions, a t-test was con-
ducted on each question of the 10 scales of the subjective questionnaire.
Three significance levels were assessed: 90%, 95%, and 99.99%. In total,
twenty-one out of the eighty-four questions showed statistically significant
differences between the two conditions. Table 1 reports the obtained rating
statistics from 11 of these 21 questions that are related to the gaming experi-
ence and that also showed significant correlation with HIFs (see next section
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Table 1. Statistics and t-test results for each questionnaire scale (B: baseline; E/F: explo-
ration/fight). * corresponds to p < 0.1, ** to p < 0.05, and *** to p < 0.0001.
Units: HR – beats per min; saccade – saccades per minute.

Questions Mean +/- std Correlation per Epoch
B E/F HR Saccades

“I do not suffer from vertigo during
my interaction with the virtual
environment” – Cybersickness**

6.3±1.7 8.6±0.5 −0.32*** −0.13**

“Time seemed to flow differently
than usual” – Flow**

5.2±2.8 7.8±2.1 −0.01 −0.17***

“When I mention the experience in
the virtual environment, I feel
emotions I would like to share” –
Flow**

7.4±0.5 9.1±1.1 −0.21*** −0.13**

“I become so involved in the virtual
environment that it is if I was inside
the game rather than manipulating
a controller and watching a screen”
– Immersion**

7.1±1.4 8.5±1.6 0.31*** −0.25***

“I got scared by something
happening in the virtual
environment” – Immersion**

5.1±3.4 8.4±1.9 0.19*** −0.20***

“The virtual environment was
responsive to actions that I
initiated” – Presence**

9.1±0.8 9.9±0.3 0.09** 0.07*

“I could examine objects from
multiple viewpoints” – Presence**

8.1±1.5 9.3±0.8 0.07* 0.25***

“I felt confident selecting objects in
the virtual environment” – Skill**

6.9±1.6 8.6±0.9 0.23*** 0.08**

“I felt confident moving the cross
hair around the virtual
environment” – Skill**

6.8±1.3 8.5±1.5 0.30*** 0.04

“I enjoyed the challenge of learning
the virtual reality interaction
devices”- Emotion*

7.0±2.4 8.7±1.3 0.23*** −0.25

“I got tense in the virtual
environment”- Emotion*

4.1±2.4 5.7±1.3 0.17*** −0.05

for more details). As can be seen, the scales cybersickness, flow, immersion,
presence, skill, emotion, and technology adoption showed significant diffe-
rences between the two conditions. For each question, except cybersickness,
the average scores are higher in the exploration/fight condition relative to the
baseline. Since the former includes fight and puzzle solving challenges, this
condition is likely to induce higher stress and concentration levels for the
gamer, thus increasing such states. Increases in their perception of skill, for
example, could also be due to the fact that the exploration/fight condition
came second, thus the gamers had obtained some experience in navigating
and interacting with the objects. Moreover, as the fight conditions were more
challenging, participants also reported becoming more involved, excited, and
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engaged during this phase, hence explaining the increases in emotion, flow,
immersion, and presence subscales. However, in most cases, participants
complained of visual fatigue after 15-20 mins of playing. Only one parti-
cipant reported cybersickness with a little nausea when using VR for a while.
After 50 minutes of play, some participants experienced physical and mental
fatigue.

HIF Metrics from Physiological Data

Table 2 shows statistics obtained from the HIF metrics extracted for each
participant in each condition, as well as an average snapshop across all par-
ticipants. For ECG, we can observe an increase in the HR (in bpm) in the
exploration/fight condition for all participants, as well as on average. This
is expected, as in the first condition, the gamers explore the game and are
not confronted with any stressful situations, while in the second condition,
they face period of stress while fighting to defeat the enemies. From the EEG
signals, half of the participants showed a slightly higher EI score during the
exploration/fight condition, suggesting improved engagement. According to
the results for valence and arousal, all participants showed low values for
the arousal index and moderate values for the valence index, thus, sugge-
sting an overall positive emotion eliciting joy, and happiness. We observed
similar effects as in (Mcmahan et al., 2015) where the valence index decre-
ased during death events. In fact, participants face death situations several
times during the exploration/fight condition, hence explaining the decrease
in valence index for several of the participants, as well as on average. Lastly,
from the FAA metric, we can observe that most of the participants exhibi-
ted a negative value and an increase in the negative direction with the E/F
conditions, thus corroborating the increased levels of fear.

Next, we look at the EOG-based metrics and note that the number of
blinks/min (for 6 of the 8 participants) as well as the number of saccade-
s/min (for all participants) increased for the E/F condition. Indeed, during
the fight sequences, participants must react very quickly and look in seve-
ral directions, which explains the increase in the number of saccades/min.
Moreover, visual fatigue in known to increase the number of blinks/min. Seve-
ral participants reported visual fatigue. As the E/F condition lasted twice as
long as the baseline, this could explain the increase in blink rate for many
of the participants. Overall, across all subjects HR and saccades showed to
be significantly different across the two explored conditions, thus suggesting
potentially useful metrics to objectively characterize gamer experience. To
this end, we computed the Pearson correlation between these two HIFS and
the 11 subjective ratings in Table 1. As can be seen, several of these measures
showed highly significant correlations with flow, immersion, cybersickness,
skill, presence, and emotion. Future work will explore the use of these para-
meters to estimate gamer experience in a per-user basis, thus allowing for
user-specific game updates to maximize the experience for each gamer. The
obtained results are promising as they were achieved in highly uncontrolled
“in-the-wild” scenarios.
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Table 2. Statistics of HIF metrics per subject and averaged across all subjects. Notation:
B-baseline; E/F-exploration/fight, * corresponds to P-value < 0.1 and ** to
P-value < 0.05 Units: HR – beats per min; blinks – blinks per minute; saccade –
saccades per minute.

S1 S2 S3
B E/F B E/F B E/F

HR 81.5±8.7 100.9±6.8 98.3±20.4 111.4±4.5 94.2±7.4 96.6±5.9
EI 56.3±5.6 55.8±7.8 62.9±10.6 51.4±2.7 55.2±5.9 59.4±9.2
Arousal 14.2± 9.5 9.4±6.8 10.8±9.4 11.1±7.3 24.5±12.5 11.8±8.5
Valence 58.8±8.8 70.7±6.3 64.3±7.8 48.9±8.9 64.6±5.4 48.8±4.9
FAA 0.76±0.7 0.23±1.3 -0.13±0.5 -2.48±0.9 -0.35±0.4 -1.01±1
Blinks 15.1±4.6 11.9±3.1 19.5±5.9 22.2±7.9 22.6±4.9 21.4±2.9
Saccade 100.3±18.6 105.9±12.7 119.3±17.3 147.1±20 86.1±11.8 112.7±11

S4 S5 S6

HR 96.5±14.1 101.4±13.3 76.3±7.7 102.2±13 77.1±4.5 92.6±16.1
EI 52.2±3.5 55.6±6.1 56.8±5.9 54.6±5.9 63.8±11.1 58.5±7.9
Arousal 8.9±8.4 4.02±4.01 15.6±9.6 6.4±5.6 20.9±12.1 22.9±12.9
Valence 31.7±5.6 62.3±7.8 62.1±5.9 63.6±6 64.6±7.8 54.1±6.5
FAA 0.09±0.17 -1.72±0.92 0.01±0.32 1.68±1.03 0.77±0.7 -0.05±0.7
Blinks 10.3±3.4 17.9±5.4 19.8±5.7 18.5±4.7 10.6±2.9 17.6±4.9
Saccade 157.1±23.8 223.8±69.1 175.1±17.3 195.9±22 95.3±8.2 144.9±17

S7 S8 Average

HR 68.7±7.5 83.6±11.4 68.6±6.5 80.4±6.3 82.6±9** 96.1±10.3**
EI 55.2±6.3 56.7±6.3 60.3±8.8 60.9±10.4 57.8±4.1 56.6±2.9
Arousal 13.5±9.1 17.5±10 20.5±11.1 11.3±8.1 16.2±5.4 11.8±6.1
Valence 67.1±6.1 37.1±7 42.1±6.3 49.3±6.1 56.9±12.0 54.3±10.7
FAA -5.06±2.7 -1.15±0.9 -0.26±0.7 0.18±0.7 -0.52±1.8 -0.54±1.3
Blinks 18.1±4.9 22.4±4.9 12.9±2.6 17.4±6.1 16.2±4.5 18.66±3.4
Saccade 80.5±15.7 146.9±16.3 106.9±16.1 124.5±13 115±33* 150.2±40.7*

CONCLUSION

In this paper, we describe a new protocol to collect physiological data remo-
tely for virtual reality (VR) studies at home with minimal experimenter
intervention. By instrumenting a commercial off-the-shelf VR headset with a
number of ExG sensors (i.e., ECG, EEG, EMG, EOG), combined with a strict
disinfecting protocol, we were able to collect data from eight participants
remotely from their homes. From the collected data, several human influ-
ential factor metrics were collected and shown discriminate several gamer
experience factors, including engagement, immersion, and emotional states
from the collected signals. As future work, we will explore extraction of facial
gesture HIF metrics, additional EOG metrics (e.g., gaze velocity/accelera-
tion), as well as additional heart rate variability measures. Ultimately, the
goal will be to use the measured HIF metrics to adjust the game in real-time
to maximize the user experience for each individual gamer.
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