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ABSTRACT

Minimally invasive surgeries are meticulous procedures that require complex move-
ment within a limited range of motion, requiring intensive training. Medical training
simulators often have limited sensing modalities, restricting the quality of metrics
to quantify skill. We created a multi-modal 3D printed simulator that is affordable
and easily replicable for remote, automated, and phase-based skill assessment in
arthroscopy, a type of minimally invasive surgery. In this pilot study, four subjects
of non-medical experience levels performed a peg transfer task in the arthroscopy
simulator with synchronized motion and video. The task is segmented into phases to
determine the relative efficacy of motion smoothness and other calculated metrics.
One phase showed more significant differences in metrics than the other phases,
demonstrating the potential for phase-based skill evaluation in tasks with more com-
plex maneuvers. Our novel simulator design allowed for metrics computation at a
phase-based level, with initial results demonstrating its importance.
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INTRODUCTION

Simulators

Minimally invasive surgical techniques have increased in popularity in orth-
opedic surgery due to faster recovery time and less patient trauma (Garrett
et al. 2006). Arthroscopy, a minimally invasive surgery performed on a joint,
is used for various surgical operations ranging from partial meniscectomies to
torn rotator cuff surgeries. However, arthroscopy has a steep learning curve
because of the reduced operating range of motion, increased dexterity due
to tools, and the challenge of accurately interpreting 2D images within the
3D anatomical space. Training does seem to play a role in improved clinical
outcomes, with experienced surgeons demonstrating shorter operating times
(Farnworth et al. 2001). Consequently, there is a need for novice surgeons
to have access to more efficient learning methods for becoming proficient in
arthroscopy.
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Medical training simulators have seen an increase in popularity due to
their ability to provide efficient practice without a live subject and have been
shown to improve basic skills for arthroscopy (Kholinne et al. 2018). As a
result, the Fundamentals of Arthroscopy Surgery Training (FAST) training
simulator was created to learn arthroscopic skills in a simple model. The
simulator consists of several modules with tasks like peg transfer to train
different aspects of arthroscopic surgery, with the total time taken to complete
the task and the number of failures used for skill assessment (Goya et al.
2016). Although these two metrics differentiate between novice and expert
surgeons, surgical skill is multi-faceted and nuanced; therefore, the reliance
on overall time and failures as primary metrics is rudimentary. There is a
need for advanced metrics to quantify skills in arthroscopic simulators that
capture the complex nature of motions, forces, and decisions involved in
skilled surgery. Due to its relatively recent development, very few groups have
researched possibilities for other metrics for the FAST trainer thus far.

This study aimed to explore the feasibility of advanced metrics that quan-
tify surgical dexterity through the smoothness of motion in an affordable
3D-printed simulator similar to the FAST trainer. Additionally, we also inve-
stigated the utility of these metrics in three distinct phases of the peg transfer
task. The rationale for this is that there are critical sections where smooth, ste-
ady motion is essential during a surgical procedure. On the contrary, there are
sections where skilled movement is less important. However, many metrics
used in skill assessment are evaluated for the entire task. To facilitate a more
robust and interpretable approach to skill evaluation, we explored the value
of segmenting the task into multiple phases to isolate critical moments of the
task.

Motion Smoothness

Intuitively, one can readily appreciate that a surgeon should have superior
dexterity demonstrated by smooth motion during minimally invasive surge-
ries. Several previous simulator-based studies have used metrics to capture
aspects of dexterity such as path length, the economy of motion, and the
number of collisions to determine the level of skill (Ström et al. 2003); howe-
ver, these metrics are limited in what aspects and to what degree they quantify
dexterity in this context. Recent research has revealed the utility of motion
smoothness metrics to capture more of the complexity of motion during
surgery. Towards this, two motion smoothness metrics have been identi-
fied as candidates to evaluate skill in arthroscopy: log dimensionless jerk
(LDLJ) and spectral arc length (SPARC) (Balasubramanian et al. 2015).
LDLJ relies on the notion that ideal, smooth motion results in minimal
discontinuities in acceleration. The measure was initially developed to mea-
sure stroke recovery and saw rapid improvements to create a robust measure
ofmotion smoothness (Balasubramanian et al. 2009; Hogan& Sternad 2009;
Melendez-Calderon et al. 2020).

In addition to improving jerk’s inherent sensitivity to noise, Balasubrama-
nian et al. present a novel metric (called SPARC) to calculate motion smoo-
thness by using the arc length of the amplitude of the frequency-normalized
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Fourier magnitude spectrum of the velocity profile (Balasubramanian et al.
2012; Hogan & Sternad 2009). Like jerk, this metric relies on the idea that
smooth movements will result in lower frequencies, and unsmooth move-
ments will result in larger magnitudes of movements of several different
frequencies.

Previous Work

Although older motion smoothness metrics have successfully differentiated
skill in several surgical applications, the more recent formulations have seen
fewer uses. A study in 2016 employed dimensionless square jerk (DLJ) and
SPARC, demonstrating correlations of those metrics to scores from a global
rating scale for endovascular performance in a Fundamentals of Endovascu-
lar Skills (FEVS) trainer (Estrada et al. 2016), with newer studies with the
same trainer and group continuing to examine the use of SPARC for skill
assessment (Belroy et al. 2020; O’Malley et al. 2019). In a neurosurgery
simulator, DLJ differentiated between expert and non-expert performance
and among different task constraints in a pegboard placement task (Ghasem-
loonia et al. 2017), a task similar to a module found in the FAST simulator
and the focus of this pilot study. In 2018, the first study to our knowledge
that quantifies movement skill for shoulder arthroscopymeasured handmoti-
ons between novice and expert groups in a suture anchoring task (Kholinne
et al. 2018), a task similar to another module found in the FAST simulator
reporting positive results in DLJ and time, but not path length.

Given that many formulations of motion smoothness metrics are relati-
vely recent, only a few studies sought to apply these methods for surgical
skill assessment. Furthermore, these metrics must be rigorously tested in
specific applications that require skilled movement. For example, although
initially presented as a superior metric to LDLJ due to its insensitivity to
noise, SPARC demonstrated worse performance in rotational motion smo-
othness of hand motions (Melendez-Calderon et al. 2020). On the other
hand, our recent study found no significant differences in motion smooth-
ness metrics’ and other metrics’ association with cannulation skill (Singh et al.
2021). Therefore, there exists a need for more testing to understand the effi-
cacy of motion smoothness metrics and their application to surgical skills
assessment.

METHODS

Simulator and Design

We designed and implemented a custom, affordable, 3D-printed arthrosco-
pic simulator based on the FAST simulator (seen in Figure 1). The simulator
comprises a platform with a removable dome with holes to simulate incisi-
ons made during arthroscopic surgery. The platform’s base has replaceable
plates designed for the simulator’s various tasks: a ball-in-maze navigation
task, a peg transfer task, a shape tracing task, a partial meniscectomy task,
and a loose body removal task. This preliminary study was limited to the peg
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Figure 1: (a) Shows an image of the created workstation and (b) shows an illustrated
sketch of the peg transfer process.

transfer task, composed of a gap in the center and symmetric, colored pil-
lars on both sides. Subjects were to pick up and transfer colored pegs across
the gap to the pillar of the same color. Subjects used an arthroscopic tool
(ACUFEX Grasper Handle, Smith & Nephew) to pick up and transfer the
pegs. A custom-made endoscope was created from a borescope camera (Dep-
stech Inc.) to view inside the dome. A depth camera (Intel RealSense D435)
was mounted on the dome to record video at 60 fps. An electromagnetic
(EM) sensor (trakSTAR, Northern Digital Inc.) was mounted on the grasper
to measure position and orientation at 60 Hz. The EM sensor position and
camera data were recorded, timestamped, and synchronized through custom
C++ code. Ferromagnetic metals and electromagnetic distortion sources
were removed from the operating environment to reduce metallic interfere-
nce with the EM sensor. A 3D printed sensor holder was attached to hold
the EM sensor at a distance to prevent interference from the grasper. Tooltip
calibration was performed to detect motion at the tip of the tool.

Four participants in this pilot study were separated into two groups: two
participants with over 20 hours of experience on the simulator (deemed expe-
rienced) and two participants with no experience. Participants were asked to
transfer the four pegs closest to the gap (considered more accessible pegs to
transfer) twice. In total, sixteen pegs were transferred for the experienced par-
ticipant group and fourteen for the inexperienced group, as two incomplete
peg transfers were removed for data analysis.

Segmentation and Statistical Analysis

Balasubramanian et al. point out that the applications of motion smoothness
metrics are task-dependent; i.e., the measurements will not have universal
“smooth”and “unsmooth”values and should have constrained start and end
times for meaningful interpretation (2015). Therefore, each trial was sepa-
rated into individual peg transfers (Attempts) through manual inspection of
the synchronized camera video. By isolating the task into individualAttempts,
we focused solely on the peg transfer movement and eliminated any move-
ments that were not pertinent to the peg transfer tasks. We further separated



62 Singh et al.

Figure 2: The illustration shows each phase of peg transfer along with an experienced
user’s peg transfer position plot normalized at the start of the trial, with vertical lines
signifying phase transitions.

each Attempt into three distinct phases (defined below) to analyze metric
effectiveness at all levels of the task to explore phase-based task segmentation.

• Attempt: tend − tstart
• Lift: ttransfer − tstart
• Transfer: tplace − ttransfer
• Place: tend − tpalce

tstart is the timestamp the grasper grasps a peg, ttransfer is the timestamp
horizontal movement is seen, tplace is the timestamp horizontal movement
ceases during a successful Place, and tend is the timestamp the peg stops
moving. An illustrated peg transfer process and an example position plot
are shown in Figure 2.

The metrics used in this study are defined in Table 1. Data post-processing
was performed throughMATLAB (v. 2019b). For data processing, a Savitzky-
Golay filter of order 3 and a window span of a quarter of a second (15)
was used (Singh et al. 2021). Statistical analysis was accomplished through
RStudio (v. 1.2.1335). Parametric T-tests (α = 0.05) were computed follo-
wing Shapiro-Wilk normality tests. Data analysis revealed two outliers as
these trials took around three minutes for completion in contrast with an
average completion time of 12.4 seconds (without the two outliers). Con-
sequently, these outliers were removed, resulting in 16 experienced and 12
inexperienced Attempts.

RESULTS

The results of the t-tests are shown in Table 2, and the comparisons of mean
± standard deviation of metric values for both groups separated by phase
are shown in Figure 3. All metrics determined a significant difference of
means between the two groups in Attempt. As hypothesized, most metrics
demonstrated significant differences in the Transfer phase since much of the
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Table 1. List of metrics and their descriptions.

Name Description Equation

Time (T) The total time of the current
phase.

T = tphase_end − tphase_start

Peaks (Pks) The number of local maxima
(peaks) in the velocity
profile, computed using the
built-in MATLAB function.

Pks = findpeaks
(
dX
dt

)
;

X =
√
x2 + y2 + z2

Path Length
(PL)

The sum of Euclidean
distances between points
traversed by the grasper tip.

PL =
∫ tphase_end
tphase_start

dX
dt

Log
Dimensionless
Jerk (LDLJ)

The natural log of jerk
integrated and squared.

− ln
∣∣∣∣ T5

PL2
∫ tphase_end
tphase_start

(
d3X
dt3

)2
dt
∣∣∣∣

Spectral Arc
Length
(SPARC)

As defined in
(Balasubramanian, S. et al.,
2012), we computed spectral
arc length, the arc length of
the Fourier transform of the
velocity profile, from the
provided MATLAB code.

SPARC = −
∫ ωc
0

[(
1
ωc

)2
+

(
dV̂(ω)
dω

)] 1
2
dω;

V̂ (ω) = V(ω)
V(0)

Table 2. Confidence intervals of t-test significant differences across each phase. Signi-
ficantly different intervals are bold and noted with a*.

Confidence Intervals for Difference of Means

Attempt Lift Transfer Place

LDLJ [1.39 4.59]* [1.05 5.16]* [1.19 5.10]* [0.06 4.84]*
SPARC [0.62 3.50]* [−0.62 1.47] [0.01 0.53] [−1.06 2.40]
T [1.64 16.3]* [−1.66 0.38] [1.07 11.9]* [−4.48 0.86]
Pks [10.4 110]* [−12.2 2.02] [8.00 75.5]* [−6.35 33.2]
PL [14.5 151]* [−12.0 15.5] [8.72 127]* [−3.84 30.1]

variation in motion is seen in this phase. However, LDLJ is the sole metric
to differentiate between the pilot experienced and novice peg transfers across
the phases.

DISCUSSION

We wish to reiterate that participants in this study had minimal differences
in experience on the simulator (twenty hours of experience on the simulator
vs. no experience); however, all metrics demonstrated efficacy in distinguish-
ing between the two groups even with this limitation. As shown in Figure 3,
the inexperienced group had consistently higher variations indicative of infe-
rior performance across all metrics. Additionally, as demonstrated in Table 2,
LDLJ determined significant differences between the two groups at all levels,
demonstrating its superiority as a metric as it can distinguish across minimal
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Figure 3: A comparison of experienced (E) and inexperienced (I) means ± standard
deviations of the different metric values at each phase separated by subplots with
a dotted line drawn through the means signifies their differences. A decrease in the
y-axis represents a worse performance in that metric.

levels of movements between the two groups in contrast to the other metrics.
Therefore, motion smoothness metrics seem to provide a richer characte-
rization of the dexterity required for surgery. However, the metrics’ utility
and applicability to surgical skill assessment and learning are yet to be fully
explored.

The primary goal of this study was to examine skill differences at the
subtask level by identifying and isolating critical phases of the peg transfer
task. The Transfer phase contained worse metric values and higher standard
deviations than the other phases for both groups. All metrics but SPARC
demonstrated significant differences between the two groups at this phase.
In previous studies, SPARC has demonstrated superior evaluation of surgical
skill in comparison to metrics like T and PL. The lack of SPARC’s significant
differences can be explained through a small sample size and minimal diffe-
rences in skill levels between the two groups in the pilot study. We anticipate
that future studies examining subjects with more significant skill differences
combined with a larger sample size will yield more robust and generali-
zable results. Additionally, applying phase-based segmentation with tasks
with more complex maneuvers will provide greater insight into inter-metric
reliability and strength.

In this study, we present the design of a custom novel and affordable 3D
printed arthroscopic simulator that incorporates two sensor modalities that
could potentially be used for objective, automated skill assessment through
sensor metrics. Conventional “box” surgical trainers rely on rudimentary
metrics like time and number of errors to evaluate skill. By providing multi-
modal capture of skill, “smart” simulators allow for structured, meaningful,
and individualized training, minimizing the need for expert assessors with
time and cost implications.

Additionally, we also present the methodology of isolating a basic and
commonly used task in surgical skill assessment into critical phases, which
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may help to evaluate skill better. This method excludes unimportant pha-
ses and computes metrics in known phases, allowing for meaningful metrics
interpretation. For example, focusing solely on cutting tissue or suturing by
removing the sections between cutting or suturing allows targeted metric
computations for motion smoothness. This study indicates that these metrics
may help evaluate skills between experts and non-experts with clinical experi-
ence. Furthermore, these results also signal the potential of task segmentation
to analyze skills at different subtask levels.
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