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ABSTRACT

The aim of this study is to investigate the development and the evaluation of a com-
puter vision-based framework to aid the automatic assessment of posture deviations
in assembly tasks in realistic work environments. A posture deviation refers to a time-
varying working posture performed by the worker, that deviates from ergonomically
safe body postures expected in the context of particular work tasks and is known to
impose increased physical strain. The estimation of their occurrences can serve as
indicators, known as risk factors, for the assessment of physical ergonomics towards
the prevention of physical strain and in the-long-term of work-related musculo-skeletal
disorders (WMSD). Using visual information acquired by camera sensors, our goal is
to estimate the full body motion of a line worker in 3D space, unobtrusively, and to
perform classification of four types of posture deviations, also noted as ergonomically
sub-optimal working postures that were employed by the MURI risk analysis tool. We
formulate a learning-based action classification task using Deep Graph-based Neu-
ral Networks and differential temporal alignment cost as a classification measure to
estimate the type and risk level of the observed posture deviation during work acti-
vities. To evaluate the efficiency of the proposed approach, a new video dataset was
captured in the context of the sustAGE project, that demonstrate two different workers
during car door assembly actions in a simulated production line in an actual workplace.
Rich annotation data were provided by experts in manufacturing and ergonomics.
Both quantitative and qualitative evaluation of the proposed framework provide evi-
dence for its efficiency and reliability in supporting ergonomic risk assessment and
preventive actions for WMSD in real working environments.
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Deep learning, Computer vision

INTRODUCTION

The assessment of ergonomic risks for the prevention of work-related
musculo-skeletal disorders (WMSD) is considered a common and critical
task related to occupational safety and well-being in work environments
(Papoutsakis, et al., 2021). Especially in the manufacturing industry, labor-
intensive assembly works attribute repetitive tasks, often in sustained, awkw-
ard working postures (Vieira & Kumar, 2004) that lead to increased physical
discomfort and stress, according to several studies on physical ergonomics
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Figure 1: The car door production line at CRF that comprises three assembly
workstations.

(Brito, et al., 2019) (Bao, et al., 2020). Such a dynamic working posture,
noted as ergonomically sub-optimal posture, refers to a sequence of upper-
or whole- body configurations or poses of a certain minimum duration that
deviates from safe postures expected in the context of particular work acti-
vities. Each type of sub-optimal working posture imposes increased physical
stress to body joints or parts, while assessing their occurrences serve as risk
indicators, which are known as risk factors, for WMSD.

Our case study in this work addresses the car manufacturing industry and
is part of the susAGE system,1 which is developed to provide a person-
centered smart solution to support the employment, safety and health of
ageing workers in occupational contexts. An actual car manufacturing work-
place is considered that is available at the CRF-SPW Research & Innovation
department of the Stellantis group in Melfi, Italy. In this context, we specifi-
cally focus on line workers that work in shifts, each on a single workstation
of a simulated car door production line, as shown in Figure 1. Each worker
executes a specific set of car door assembly activities, noted as task cycle, that
lasts for 4 to 5 minutes and is continuously repeated during her shift.

One of the novelties of sustAGE is the adoption and integration of the
Micro-Moments (MiMos) concept (Athanassiou, et al., 2021). MiMos are
used to digitize interactions with the physical environment, repeated pat-
terns, or events occurring in workers’ daily living routines and they link
with recommended actions targeted directly at the workers themselves or at
their supervisors. By issuing recommendations through MiMos, the system
capitalizes on the early detection and avoidance of risky and stressful con-
ditions that affect the performance of individual workers or worker groups.
Accordingly, recommendations reach the users at the right moment and place,
and proposed actions match the users’ preferences and current needs. There-
fore, for being able to issue recommendations and prevent risky situations in
the actual work environment, it is important to monitor the workers’ body
motion and early detect such situations and their underlying conditions.

1http://www.sustage.eu
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In this direction, we aim to detect posture deviations of increased ergono-
mic risk for physical strain. To achieve this, we rely on visual information
acquired by low-cost cameras placed along the simulated production, as
shown in Figure 1. Our goal is to estimate and track, in real-time and unob-
trusively, the full human body motion in 3D space, in the presence of severe
and possibly long-term occlusions, and to classify the ergonomically sub-
optimal posture deviations performed during assembly activities. The module
that process this information provides the sustAGE system with informa-
tion on the detected events and trigger personalized recommendations to the
workers for preventive actions aiming to enhance occupational safety.

The main contributions of this work regard: (a) an unobtrusive and
low-cost solution for the unobtrusive, automatic classification of posture
deviations during work activities using visual information. It relies on a novel
combination of Graph-based Convolutional Networks (Yan, et al., 2018)
and the soft-DTW method (Cuturi & Blondel, 2017) for pairwise temporal
alignment of 3D skeletal data sequences. (b) A new dataset that comprises
synchronized color and depth image sequences of car door assembly activities
captured in an actual manufacturing environment. Annotation data is avai-
lable for the assembly actions and posture deviations ergonomics according
to the MURI risk analysis method (Womack, 2006).

In the following Sections, we elaborate on the proposed methodology, the
visual data acquisition and annotation processes as well as the experimental
evaluation of the proposed method using the new video dataset. Finally, the
last section reports the main findings of this work and summarizes our next
steps.

VISUAL DETECTION OF POSTURE DEVIATIONS IN
ASSEMBLY TASKS

The main parts of the proposed methodology are described in the following
sections. Visual information acquired using low-cost camera sensors installed
in the actual workplace feeds two state-of-the-art deep-learning based meth-
ods that efficiently estimate the skeleton-based human poses in 2D and finally
in 3D space, unobtrusively and in the presence of body occlusions. Then,
a novel deep-learning based classification approach is proposed for classif-
ying the observed posture deviation based on sub-optimal working postures
indicated by the MURI ergonomic risk analysis method (Womack, 2006).

We are interested in modelling and classifying the set of posture devia-
tion, as shown in Figure 2, that regard a set of time-varying, ergonomically
sub-optimal working postures based on the MURI risk screening meth-
od~\cite{womack2006lean}. According to the World Class Manufacturing
strategy (WCM) (Schonberger, 2008) the MURI analysis is a generic and
widely-used tool for efficiency evaluation and screening of the physical ergo-
nomics in workstations in different production contexts (Brito, et al., 2019)
and especially in the automotive industry. We focus on four main types (ske-
tches) of working posture deviations used by the MURI risk analysis method,
as shown in Figure 2. Each main type is further analyzed into three postu-
ral variants that are associated with increasing levels of ergonomic risk for
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Figure 2: Four types of ergonomic working postures according to the MURI risk analy-
sis method. Deviations per type of working postures regard three variants labeled
as Level 1 (red), 2 (yellow) to 3 (green) that corresponds to high, medium and low
ergonomic risk.

physical strain/stress imposed to specific body parts and joints during work
activities. These variants refer to the low (‘Level 3’), medium (‘Level 2’) and
high (‘Level 1’) risk level, that are quantified according to specific criteria
linked to the pose-based angles and positions of the body parts. The low risk
variants of the postures correspond to a neutral body pose of low or no ergo-
nomic risk for physical strain. ach working posture is realized as time-varying
event; thus, a sequence of body configurations with a duration of at least 4
seconds. Therefore, we define a set of nine target classes of working postures
that comprise the high-risk (‘Level 1’) and the medium-risk (‘Level 2’) vari-
ants for each of the four main types of working postures and a single class of
low-risk or normal body posture for all four types.

Visual Human Pose Estimation

Given a sequence of N images that shows a line worker performing a single
or multiple assembly actions for a workstation, we employ state-of-the-art
deep-learning-based methods for the estimation of the skeleton-based pose
(or posture) of the human body per image. Specifically, we use the popular
OpenPose method (Cao, et al., 2019) to obtain a set of 2D image coordinates
(x, y), that is the locations of 25 skeletal body joints according to the BODY25
pose output model.2 The set of 2D coordinates of the body joints per image
is subsequently used to feed the MocapNet2 method (Qammaz & Argyros,
2021) that relies on ensembles of Deep Neural Networks to efficiently regress
a view-invariant skeleton-based pose in 3D space.

2https://cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/md_doc_02_output.html

https://cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/md_doc_02_output.html
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Figure 3: An overview of the proposed approach for posture deviation classification is
shown.

Moreover, the hierarchy of the 3D skeletal body model is split into the
upper and the lower body parts that are estimated independently. The output
of the MocapNet2 method is a Biovision Hierarchy (BVH) character anima-
tion file format (Meredith, et al., 2001) representing the estimated 3D human
motion for the input image sequence.

Based on this information, we extract a set of view-invariant, user-centric
3D coordinates (x, y, z) of 25 main body joints per frame with respect to the
body torso (Theodorakopoulos, et al., 2014). Essentially, this information
constitutes a 3D skeletal data sequence; a multi-dimensional (75D) time-
series of length N. The following body joints are considered based on the
body configuration used in the NTU RGB+D 120 dataset/benchmark for
3D human understanding (Liu, et al., 2019): base/middle/upper spine, neck,
head, left/right shoulder, left/right elbow, left/right wrist, left/right hand, tip
of left/right hand, left/right thumb, left/right hip, left/right knee, left/right
ankle, left/right foot.

Visual Classification of Posture Deviations

We use the estimated 3D skeletal sequence to feed a Spatio-temporal Graph
Convolutional Network model (ST-GCNs) (Yan, et al., 2018) for learning
efficient discriminative representations of the spatio-temporal dynamics of
the human postures and actions, as shown in Figure 3. The ST-GCN model
represents the locations and the dependencies of the human skeletal joints,
as graph edges in a spatial graph-based CNN for each video frame. The tem-
poral aspect of the graph is constructed by connecting the same joints across
consecutive frames to model the spatial temporal dynamics of the human
motion.

The last layer of the ST-GCN model provides a 256-dimensional feature
vector, that is considered as an encoding or embedding of the input seque-
nce to a new feature space. Then, a SoftMax classifier is used to transform
the embedding values of the network to probabilities towards the target clas-
ses. We train a ST-GCN model using 3D skeletal sequence as input and a
modified SoftMax layer as output towards the set of nine target classes (see
Figure 2) in order to optimize for the network weights and for learning to
encode the input information of user-centric 3D skeletal poses into a new
shared embedding space, as shown in Figure 3.

The next step of the proposed approach is to define a metric for the pairw-
ise comparison of an unlabeled skeletal sequence X with one or more labeled
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skeletal sequences Yi assigned to each of the target classes Ci of working
postures. The metric scores will be used to classify the unlabeled sequence
X to one with the lowest score; the most similar Ci class. To this end, we
the soft Dynamic Time Warping approach (softDTW) (Blondel, et al., 2021)
to estimate the temporal alignment cost between sequences as our classifica-
tion metric, as shown in the outline of the proposed approach in Figure 3. To
solve a minimal-cost temporal alignment problem between two data seque-
nces, the Dynamic Time Warping (DTW) approach (Garreau, et al., 2014)
employs dynamic programming and uses the Euclidean distance to measure
the discrepancy between all pairs of time-stamped values of the data seque-
nces (or feature vectors in case of multidimensional data). soft-DTW extends
the DTW and computes the soft-minimum of all alignment costs, provi-
ding also a differentiable loss function that can be computed with quadratic
time/space complexity.

VISUAL DATA ACQUISITION

Data Acquisition Setup

To facilitate the implementation and evaluation of the proposed methodo-
logy, we collected synchronized image and depth sequences during car-door
assembly activities. Those were performed by actual line workers for a simu-
lated production line that is available in a realistic manufacturing workplace
at the CRF-SPW Research & Innovation department of the Stellantis group
in Melfi, Italy. In this realistic setting, three assembly workstations are sequ-
entially arranged on a conveyor belt that moves at a low, constant speed
realizing a continuous workflow of the car-door assembly process. A sin-
gle line-worker is assigned to each workstation to perform a sequence of
up to 25 assembly actions of total duration between 4-5 minutes, noted as
task cycle. We follow a low-cost, unobtrusive (non-invasive) sensing appro-
ach using camera sensors for data acquisition that allows workers to perform
ordinary assembly activities in the real working environment while capturing
visual data without the need for the installation of special expensive equi-
pment and wearable suits/reflectors (i.e., a motion capture system). Thus,
the proposed solution is potentially applicable across the whole production
line. Specifically, cameras are placed at stationary positions at each side of the
production line, two cameras per side, to simultaneously monitor the wor-
kers’ assembly activities from both the inner-door and outer-door working
areas of the workstations. Each camera captures a stereo pair of RGB (color)
image sequences and a depth-based image sequence of resolution 1080p at
30 frames per second, while visual data sequences acquired by all cameras
are time-synchronized using a common reference clock.

Data Annotation

The data collected, formed a new video dataset with 12 task cycle executi-
ons of time-synchronized visual data; i.e. RGB and depth image sequences.
Annotation data for the recorded task cycles were provided by experienced
professionals in manufacturing and ergonomics. As shown in the example
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Figure 4: Annotation data shows the instances of posture deviations and ergonomic
risk scores observed during part of a task cycle based on the MURI analysis method
(Womack, 2006).

annotation data table in Figure 4, annotation include: (a) the temporal
boundaries (start and end timestamps) and the semantic label for each assem-
bly action (one action per row) performed by the worker during the task
cycle, (b) the instances of the target types of ergonomic working postures of
interest (noted in columns) for each assembly action (row), and (c) the ove-
rall ergonomic risk score for the task cycle execution estimated according to
the MURI risk analysis method, as shown in Figure 2. Annotations toward
the three risk levels for each type of working posture correspond to high,
medium, low risk as semantic labels, to red, yellow and green as color-coded
labels, and to integers 1, 2, 3 as numerical scores, respectively. The annotated
task cycles comprise 310 assembly actions, each of average duration of 13
seconds. Moreover, the annotated instances of Level 1, Level 2 and Level 3
posture deviations for all types of working postures are 38, 126 and 818,
respectively.

EXPERIMENTAL EVALUATION

The performance of the postural classification approaches is evaluated using
the videos of the segmented assembly actions. A subset of 220 and 90 videos
were used as training/validation and test samples, respectively. Then, our goal
is to classify each video clip against the set of target classes of ergonomic
postures defined in Figure 2. Qualitative results of the proposed approach
are demonstrated in Figure 5. Tomeasure the quantitative performance of the
classification task, we employ the metrics of Precision, Recall and F1 score
that are commonly used in the fields of statistics, data science and information
retrieval. The F1 score metric is the harmonic mean of precision (ratio of the
positive occurrences towards a category that are actually correct) and recall
(ratio of actual positive occurrences that were classified correctly) in the range
[0, 1], where 1 indicates perfect precision and recall:
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Figure 5: Qualitative results of the proposed method for the classification of the ergo-
nomic working postures. Overlaid information regards the estimated 3D body pose
and the identified types and ergonomic risk level for physical strain of the detected
working postures.

Table 1. Quantitative results of the deep learning-based approach for the classification
of the ergonomic working postures, as shown in Figure 2.

Posture
Deviations

Flexion Angle of
the Waist

Rotation Angle
of the Waist

Height of the
Working Arm

Flexion/Stretching
Angle of the Knee

Risk level L3 / L2 / L1 L3 / L2 / L1 L3 / L2 / L1 L3 / L2 / L1
F1 score 0.73/0.80/0.90 - /0.63/0.90 0.80/0.62/0.89 0.25/0.38/0.88
AVG F1 score 0.831 0.766 0.771 0.504

F1score = 2 ·
Precision · Recall
Precision+ Recall

.

The efficiency of the proposed deep-learning based classifier is reported in
Table 1, based on the F1 scores and the average values for all types of ergo-
nomic working posture deviations. The poor performance for the posture
type of the flexion-stretching-angle-of-the-knee is mainly due to the low qua-
lity of 3D body pose estimations during this time-varying body posture as
the knees are self-occluded mainly by the upper legs and possibly by the
waist. The overall performance marginally exceeds 70% of correctly clas-
sified posture deviations, which is considered satisfactory considering the
challenging conditions for acquiring high quality estimation of the human
motion in real-world manufacturing environments.

CONCLUSION

Based on the experimental evaluation conducted using the newly compi-
led video dataset, the proposed vision-based approach is able to accurately
capture and monitor the fine-grained body motion of the line workers in 3D
space and to effectively estimate posture deviations during assembly activi-
ties, as ergonomic risk indicators for physical strain. Beyond monitoring, the
proposed framework can also be used to automate the task of physical ergo-
nomic risk assessment during computer-aided evaluation and optimization
of manufacturing workflows, either at the design or the production stage,
and possibly for automated computation of visual analytics during manufa-
cturing tasks. Overall, it can be applied to highlight process variability and
quality assurance for manufacturing tasks in various industrial contexts and
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to help industrial and lean engineers to jointly balance the workload in pro-
duction lines, ensure worker safety and enhance productivity. Future goals
are related to the development of an end-to-end deep neural architecture for
the temporal localization and recognition of an enriched set of target posture
deviations using an RGB image sequence or skeletal-based data informa-
tion as input and to link our approach to an ergonomic risk index/checklist
(e.g. OCRA checklist, EAWS methodology) for the automatic assessment of
physical ergonomics.
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