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ABSTRACT

Workers in ports work with and in close proximity of heavy machinery. Quay cranes
used for moving containers between ships and the dockside yard are one of the most
accident-prone equipment types. For picking up containers, these cranes are equipped
with spreaders, i.e. lifting devices which are lowered down on top of containers and
lock on to them mechanically. We are concerned here with monitoring a moving quay
crane spreader so as to make sure that safe clearance distances are maintained from
the locations of dock workers in a port container cargo handling environment. The
paper describes the application of computer vision techniques to develop a model-
based, monocular spreader tracker. By tracking in three dimensions the position and
orientation of the spreader during loading and unloading operations, a threat volume
enclosing it can be defined. Constantly monitoring the distance of dock workers from
this threat volume can improve the operator’s situational awareness and increase
safety in the work environment. Quantitative experimental evaluation is also reported.
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INTRODUCTION

The practice of transporting raw materials and finished products in contai-
ners of standardized dimensions has facilitated seamless and efficient cargo
movement over long distances. Intermodal freight containers permit the rapid
movement of cargo between road, rail and water transportation networks.
Container vessels loaded and unloaded via quay cranes (Bartošek & Marek,
2013) have been one of the key factors behind the growth of the global mari-
time industry in recent decades. This trend is intensified by the increasing
number of container mega ships entering service each year. The ever-growing
volume of containerized cargo demands its high-speed handling at ports,
which however runs the risk of increasing the fatigue and stress of both the
crane operators and dock workers over time. This can ultimately jeopardize
the safety of dock workers in the vicinity of a crane. According to (PSS, 2019),
vessels carrying containers are the most likely to have an accident, whereas
(Budiyanto & Fernanda, 2020) report that human error is the most common
cause of accidents during loading and unloading container operations. The
following sections present our efforts towards improving the safety of dock
port workers.
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SPECIFICATIONS AND DESIGN

To prevent struck-by injuries that are induced by a container, a spreader or
a falling object, we monitor the position of a moving crane spreader relative
to the location of dock workers. Using computer vision analysis of a video
stream obtained from a camera mounted on the crane, we continuously track
its spreader. Tracking aims to constantly estimate the location of the crane
spreader in 3D space. The spreader is a rigid object, hence its location in space
is specified by a rotation matrix for orientation and a translation vector for
position, which are collectively referred to as its 6D pose.

Based on the estimated pose, a threat volume is defined around the crane
spreader in the form of an oriented bounding box (OBB). The worker’s loca-
tions relative to the moving spreader are also continuously monitored via
dual-band Global Navigation Satellite System (GNSS) receivers integrated in
their smartphones. Determining whether safe clearance distances are main-
tained from all workers amounts to estimating the distance to the OBB from
the location of each worker. If the spreader moves too close to a worker,
posing an imminent threat to his safety, alerts directed to both the particular
worker and the crane operator can be automatically triggered.

METHODOLOGY

To account for the lack of strong texture on the spreader, our tracking algo-
rithm is based on straight line segments and is inspired by RAPiD (Harris,
1992). The algorithm can accommodate an arbitrary triangle mesh model
without any pre-processing. This is achieved by using an object model toge-
ther with rasterization rendering to produce a depth image and perform
hidden line removal. Rendering automatically handles self-occlusions, thus
permitting control points to be defined on visible wireframe segments. The
6D pose is evolved from frame to frame using robust regression techniques.
The rest of the paper presents an overview of our approach whereas a detailed
technical description can be found in (Lourakis & Pateraki, 2021).

The primary idea behind RAPiD-like tracking is that the difference betw-
een the actual pose and its estimate is small. This allows linearization of
the pose estimation and, in combination with the knowledge of the object’s
3D model, simplifies edge matching. Specifically, edge matching involves the
definition of a sparse set of so-called control points (Harris, 1992) on the
tracked 3D object, which are likely to project on high-contrast image edges.
By measuring the perpendicular component of the displacement of these con-
trol points projections on the image plane, the 3D motion of the underlying
object between two consecutive frames can be estimated. The current pose
estimate is then updated with the incremental frame pose change.

Control points in the original RAPiD were manually sampled offline along
the edges of a 3D object model and in areas of rapid albedo change. In our
case, they are generated dynamically by combining information from strai-
ght line segments detected in the image and a rendered wireframe model. This
increases significantly the applicability and flexibility of the developed tra-
cker, as it does not impose any constraints on the form of the employed 3D
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model, nor it presumes any sort of manual intervention for the definition and
visibility management of the control points.

Straight Line Segment Detection

Image straight line segments are detected in this work with the LSD detector
(Grompone von Gioi, et al., 2010). It applies region growing to partition
an image into line support regions with similar gradient orientation, appro-
ximates each such region with a rectangle and validates its meaningfulness
using the number of aligned orientations. LSD is employed in our pipeline
to compute a binary image which classifies pixels as belonging to a straight
line segment or not. This binary image along with the orientation of the line
segments quantized in four bins form the basis for the perpendicular points
matching that is required for tracking. To save computations, line detection
is not applied to an entire image but rather a rectangular region centered on
the spreader’s last known projection.

Depth Rendering and Object Models

Depth rendering generates an image whose pixel values are depths rather
than intensities. More specifically, provided with a triangle mesh model
of an object and a camera pose, every pixel in the rendered depth image
corresponds to the depth of the nearest point on the model’s surface that
projects on the pixel in question. To deal with multiple triangles projecting
on a pixel, the Z-buffering algorithm is employed (Akenine-Moller, et al.,
2008). Z-buffering is a computer graphics technique that is used to deter-
mine whether an object, or part of it, is visible in a scene. It uses a 2D Z
buffer to compare the depths of a certain pixel for all triangles projecting
on it and retains the smallest, as this corresponds to the closest triangle. In
this manner, a solid object in the foreground will block the view of those
behind it. Z-buffering is also employed to perform hidden line removal, as
follows. Unoccluded projected triangle edges are specially marked in the Z
buffer, excluding edges that are shared by pairs of triangles with parallel nor-
mal vectors. Then, the visibility of edges is determined based on their depth
comparison, as with all non-edge pixels.

A medium-level detail mesh model of the crane spreader was designed with
CAD software, using its actual physical dimensions obtained from engine-
ering drawings. Elaborate, high detailed models were avoided as they do
not noticeably improve the accuracy of tracking, while incurring a larger
computational cost to be rendered.

Line Segment Matching

Starting with two binary line segment maps and their corresponding quan-
tized orientation maps, line segment matching concerns the establishment
of partial, perpendicular correspondences between line segment pixels. This
is achieved by examining each segment pixel in the source (i.e., rendered)
segment map and moving along the segment normal direction in the target
(i.e., intensity) map, until either a segment pixel is found or a maximum dista-
nce from the starting pixel has been traced. To declare a partial match, the
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segment pixel found in the target map has to have an orientation compatible
with that of the source pixel.

The search for a perpendicular match along the segment normal has linear
rather than quadratic complexity, this being a crucial enabling factor for
real-time tracking. The search for corresponding segment pixels has to be
performed in both directions normal to a line segment, as it is not possi-
ble to know in advance which side of the source line segment the target one
has moved. In case that matches are found for both directions, the closest
one is retained. Visited pixels are determined with Bresenham’s line drawing
algorithm which involves integer coordinates only.

Pose Update

Given a set of perpendicularly matched points in two line segment maps,
pose update uses them to determine an estimate of the pose change giving
rise to the two segment maps and then update the current pose estimate in
an incremental fashion. A single perpendicularly matched point pair provides
one linear constraint in the six parameters defining the incremental change in
pose. Details on the mathematical derivation of this constraint can be found
in Section 3 of (Lourakis & Pateraki, 2021).

In theory, six perpendicular matches along different directions suffice to
yield a unique solution. In practice, many more segment matches are establi-
shed, thus the change in pose can be estimated from all available constraints.
However, various sources of error will cause certain perpendicular distances
to be erroneous, therefore giving rise to outlying constraints with large resi-
duals. Hence, pose estimation should be carried out using robust regression
techniques. In this work, robustness is achieved with graduated optimization,
specifically the graduated non-convexity (GNC) approach of (Yang, et al.,
2020). This is a general-purpose approach that optimizes a sequence of surro-
gate functions, which starts from a convex approximation of the desired cost
function, and gradually becomes non-convex as it converges to the desired
cost. A surrogate function may be chosen as a scaled version of the origi-
nal robust cost function, which is easier to minimize as it induces fewer local
minima than the original cost. The surrogate function is equivalent to the sum
of two terms, a weighted least squares and a function of the weights. Thus, it
is iteratively optimized by alternating between a variable update and a wei-
ght update step. The variable update step solves the weighted least squares
problem using non-minimal solvers, whereas the weights are then updated in
closed form.

To align the local coordinate system of the tracking camera with a ground
coordinate system, a camera georeferencing technique combining informa-
tion from ground control points and low-cost GNSS receivers was developed
(Lourakis, et al., 2020).

Single Frame Pose Initialization

The approach described above estimates incremental pose updates which are
integrated over time in order to yield the spreader’s pose in a certain image
frame. To determine the spreader’s pose in a single frame so as to bootstrap
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Figure 1: Characteristic lines in spreader model (left) and container with attached
markers (right).

tracking, we developed the semi-automatic procedure described next. First,
we delineate in the image in question a few characteristic lines whose preima-
ges in the spreader’s mesh model are easily identifiable (see Figure 1 (left)).
Then, a preliminary estimate of the spreader’s pose is computed from these
lines with a Perspective-n-Line (PnL) solver (Wang, et al., 2019) embedded
in RANSAC (Fischler & Bolles, 1981) for filtering out any outliers. Finally,
the preliminary estimate is refined using the Levenberg-Marquardt non-linear
least squares algorithm (Lourakis, 2004) to minimize the re-projection error
between actual image line segments and their projected locations predicted
with the pose estimate (Kamgar-Parsi & Kamgar-Parsi, 2004). PnL requires
at least three lines; using a few more improves robustness. Only the orientati-
ons of line segments matter in this process and not their actual endpoints. The
task of defining the characteristic model lines is accelerated by a custom gra-
phical tool that allows these lines to be overlaid on the image and interactively
manipulated.

EXPERIMENTAL EVALUATION

Experimental results from a prototype of the tracker are presented in this
section. The input used consists of image sequences depicting a crane spreader
during normal container vessel loading/unloading operations at Heraklion’s
port container terminal. The sequences were acquired with a GigE camera
installed next to the operator’s cabin of a pedestal quay crane at a height of
approximately 20 meters from the ground. Intrinsic camera calibration was
performed offline and lens distortion was removed from the acquired images
using the estimated coefficients. The tracked spreader is of the single-lift type,
measures around 12.2 m (40 ft) along its longest dimension and is suspended
with wire ropes from the crane boom at locations several meters away from
the camera.

Collection of Ground Truth

To assess the accuracy of estimated poses, ground truth pose data must be
available. To obtain such data, several marker patterns were attached on the
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Figure 2: Alignment and translation pose tracking errors for two sequences.

surface of a container and then videos of this particular container being lif-
ted and moved were acquired. The markers are installed on the container so
that they do not interfere with the appearance of the spreader. Markers in
the captured images are automatically localized and recognized with image
processing techniques. By employing markers with distinct visual patterns
whose physical locations on the surface of the container are accurately mea-
sured, their 3D model coordinates and their corresponding image projections
become available. Estimating pose essentially becomes a task of solving the
Perspective-n-Point (PnP) problem (Terzakis & Lourakis, 2020) in a robust
regression framework, followed by a minimization of the inlying points re-
projection error with the Levenberg-Marquardt algorithm (Lourakis, 2014),
(Lourakis & Zabulis, 2013).

For the experiments reported here, a total of 22 unique ArUco
(Garrido-Jurado, et al., 2014) artificial markers were printed on A3 paper
sheets. Each such marker has a distinct 2D binary pattern that uniquely iden-
tifies it and can be automatically detected in images. Seventeen of the marker
sheets were affixed to a large vertical face of a container and the remaining
five to a small vertical face (see Figure 1 (right)). The markers were detected
automatically in images and their corresponding 3D model coordinates were
inferred from their identity and the knowledge of their actual location on
the container’s surface. Not all markers can be detected in each image due to
distance and perspective deformation. Still, around 15 of them were always
detected with 3 being the sufficient minimum for determining pose.

Results

We report here two experiments performed using video sequences that depict
a 40 ft high-cube container being moved, with the markers attached to two
of its sides (cf. Figure 1). The employed camera lens had a medium focal
length (f = 6.0mm), which, combined with the fact that the container is rela-
tively close to the crane, provides close views of the container + spreader
combination. This, in turn, facilitates the detection of the marker patterns.
Graphs illustrating the tracking error with respect to ground truth are shown
in Figure 2. Each such graph contains two curves, plotted using y-axis labe-
ling with two vertical axes on the left and the right of the graph. One of the
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curves depicts the alignment error (the ADDmetric, see (Hinterstoisser, et al.,
2012)) whereas the other corresponds to the translation (i.e. positional) error.
The root mean square (RMS) errors are included in the plot legends. It is clear
that the alignment error is always less than 1 m and around 0.5 m on average.
The tracker’s running time depends on the size of images as well as the appa-
rent size of the tracked spreader in them and is between 3 to 6 frames per
second for the 1928x1448 images that were used. The bulk of the running
time is spent by LSD in line segment detection. More experimental results
can be found in (Lourakis & Pateraki, 2021).

Having applied the proposed tracker to several image sequences, we have
empirically verified that it generally performs satisfactorily. The tracker is ini-
tialized semi-automatically, using the previously described procedure based
on the identification of characteristic line segments. We have observed that
tracking is primarily challenged by large changes in the appearance and appa-
rent size of the spreader. Another issue relates to rapid motions and crane
vibrations as well as dropped image frames due to high network or host CPU
latencies which can create jumps in an image sequence that hinder the establi-
shment of matches. Tracking performance is less susceptible to impediments
such as low resolution, illumination changes, shadows, overexposure and
partial occlusions. A parameter that needs to be properly selected is that spe-
cifying the maximum search range for potential matches along directions that
are perpendicular to line segments.

CONCLUSION

Container terminals are high risk working environments. This paper has
described computer vision techniques which address the problem of tra-
cking a container crane’s spreader in 3D space during loading and unloading
operations. In this manner, they improve the monitoring of risk zones and
contribute to increasing occupational safety.
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