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ABSTRACT

Human technological systems are growing increasing complex and sophisticated.
New energy opportunities are emerging with the proliferation of utility and consumer
scale solar power that enables individuals to become both producers and consumers
(prosumers) of power. Grid storage in the form of batteries, pumped hydro, and ther-
mal are also becoming increasing capable and available for providing grid stability and
resiliency. Artificial intelligence is quickly becoming cheaper to train and more capa-
ble at solving problems at scale to the point where it can be deployed and entrusted
with critical infrastructure tasks. Taken together the electric grid is a complex system
of systems that is partially evolved and partially designed, it is operated by human and
machine agents. Determining how to maintain effective oversight of systems is a tech-
nical and philosophical challenge. Here we explore some qualitative classifications to
guide those decisions.
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INTRODUCTION

In 1992 a computerized dispatch system for the London metropolitan area
was developed and deployed for the London Ambulance Service (LAS). The
LAS was responsible for providing service to 6.8 million people living in a
600 square mile area. On a typical day they would average between 2000
and 2500 calls to be handled by a fleet including 445 ambulances distributed
across 70 stations. Prior to the computer-based system the process of dispa-
tching ambulances was entirely manual. The new computer-based systemwas
intended to reduce response time to within threeminutes as required by recent
legislation. The system included automatic vehicle locating system (AVLS) to
automate resource identification and mobilization. The computerized LAS
went live on October, 26, 1992 to service all 6.8 million residents. The
deployment was a spectacular failure resulting in multiple units being sent
to some locations while neglecting others. The automated system also dispa-
tched units from far away when closer units were available. The problem
was further exacerbated by a frantic public making multiple calls to ensure
service. By the next-day the LAS reverted to a partially-manual system, and
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within 8-days the system completely stopped working and was shutdown.
In the aftermath the system was attributed as causing as many as 46 deaths
(Musick, 2006).

The LAS failed for numerous reasons: the hardwarewas under specified for
the application, the development went to a low bidder who underestimated
the work required and lacked the necessary skills to carry out the project.
The system was also not properly commissioned and stress tested. Notably,
the software contained a memory leak that ultimately crippled the system
(Musick, 2006).We can discuss LAS as a warning to placing toomuch trust in
machines and to point out the resilience of human decision makers. However,
we can also note the success of transportation as a service companies like
Uber, Lyft, and Waymo who have all demonstrated success as astounding
scales.

Useful Artificial Intelligence

Fast-forward to 2022 and Uber algorithmically routes 93 million monthly
users with 3.5 million drivers. In addition, Uber Eats generated $4.8 billion
in revenue for 2022 implying Uber delivered hundreds of millions of meals.
Jeff Clune, the former director of Uber’s AI lab described “machine learning
as the heart of almost every aspect of Uber.” Artificial Intelligence is used to
optimize ride sharing (where more than one set of passengers share a vehicle),
to identify fake accounts, improve routing, and provide better prediction to
volatility around historical events. Over the last decade the capabilities of
artificial agents and our ability to deploy them at scale has greatly enha-
nced. This isn’t to say they are perfect. Detractors of Uber point out that the
overuse of AI for managing “gig workers” has lead to negative sentiments
among drivers who can’t help but feel they are being managed by machines
who sometimes whimsically decide their livelihoods (Ma, Yuan, Ghafurian,
Hanrahan, 2018).

Clune (2020) describes how tackling applied problems in computer scie-
nce has evolved. Computer scientists use to decompose problems and design
hand-coded solutions to problems. We problems proved too challenging we
then hand-coded systems and used machine learning to optimize the systems.
In some cases, we would hand-code the features, like edges, and gradients
that the systems should learn. Then we found that the end results were better
if the machine learning identified features on its own. Now we progressed
to allowing machine learning to learn the system. Our understanding of how
to train AI is also evolving. The traditional approach is to optimize for a
single fitness function, however Clune illustrates with a trivial example of
an agent minimizing distance to a target in a 2d maze why this is not sati-
sfactory compared to an agent how is optimized to explore the space. An
algorithm trained to minimize distance falls into local minima and fails to
reach the target. The algorithm tasked with exploring the space reaches the
target by chance. Clune also describes how with traditional machine learning
we would optimize two variables (cost and time) by devising a single fitness
function and allowing the algorithm to try to simultaneously optimize both.
In contrast the two-dimensional reward landscape can be explored resulting
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in algorithm that has overall better performance.Meta-learning AI has found
that goal shifting is key to success. By changing goals algorithms continue to
adapt. These adaptations may not always lead to better outcomes with the
current goal, but might prove useful for other goals or tasks. Likewise, chan-
ging the environment is also important to meta-learning. POET the Paired
open-ended trailblazer algorithm trained a bipedal two-dimensional robot to
walk. The presence of small blocks was instrumental to the robot walking
in an upright fashion. The upright behavior did not evolve when the robot
as on a flat surface. By changing the learning environments, the robot was
eventually able to navigate heterogeneous terrain with steep slopes, pits, and
other obstacles.

Key to the success of AI in the last decade is the pace of compute. Spe-
cifically, the cost to train AI is improving at 50x the pace of Moore’s Law
with training compute in Petaflops/day increasing at a pace of 10x a year
(Wang, 2020). The future is AI applications becoming both ubiquitous and
invisible. For instance, Adobe Photoshop is distinguished by top-tier AI that
aides users in edge selection, intelligent masking and replacement, and pho-
tographic enhancements. But users of Photoshop are not trained as computer
scientist – some might not even realize they are using AI.

Here the conjecture is that similar trends are inevitable with the eventual
management, oversight and control of critical infrastructure. AI will offer
increasing sophisticated and integrated capabilities to improve system relia-
bility and resilience.Manymight find this scenario unlikely, especially for risk
adverse industries such as nuclear power and would even agree that operating
paradigm for existing generation II reactors will not drastically change. How-
ever, the accelerating pace of technology is worth noting. Edison invented the
lightbulb in 1880. EBR-1 was the first nuclear reactor to generate electricity
in 1951. Our modern electric grid started as fragmented connecting power
generators to commercial and residential consumers. Over time it has become
more interconnected to the extent that it is now the largest most interconne-
cted machine on Earth with over 9,000 generators and 1,000,000 megawatts
of capacity (DOE, 2022). The most complex machine on Earth is continuing
to evolve with real-time metering, supervisory control and data acquisition
(SCADA) technologies, renewable energy sources and energy storage systems.
The future of the gird is envisioned to be more intelligent to actively respond
to overloads, accommodate energy from dynamic sources, while being relia-
ble, resilient to failure, more efficient, and better for the environment (DOE,
2022). The electric grid is a prime example of a complex engineered system in
that it is a system that is partially designed, and partially evolved. It is parti-
ally controlled by humans and partially by automation, and the configuration
and dynamics of the system are dynamic.

Despite a slow pace, Nuclear Power is undergoing a global renaissa-
nce. Small modular reactors (SMR) and microreactors are in various design
and commissioning phases. These are designed to be built in factories and
installed onsite, providing a means to rapidly deploy nuclear power while
controlling for uncertain capital expenditures and cost overruns. The OECD
(2016) is projecting that by 2035 we could have 21 GWe of new nuclear
electricity capacity installed globally with 3.5 GWe in the United States.
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Simultaneously, renewables such as wind and solar are growing exponentially
and battery electric vehicles are gaining traction in the energy sector. If veh-
icles transition to battery electric vehicles (BEV) our electricity consumption
would roughly double. The energy grid as a whole is evolving as numerous
point source generators come online and smarter grids enable better resou-
rce management and dynamic pricing. The result will be a distributed energy
market where individuals and utilities both buy and sell resources in a fast-
paced, brokered market. Or perhaps more accurately, autonomous agents
will buy and sell resources on behalf of utilities, individuals, and intermedia-
ries. The pertinent question then becomes how do we have human oversight
of resources to maintain safe, secure, and reliable operation? Such a paradigm
is a mixed initiative paradigm where both humans and autonomous agents
monitor, supervise, and control systems.

MIXED INITIATIVE TEAMING

We live in an increasing interconnected world with exponentially increa-
sing sensors. Coupled with commercial and consumer generation and storage
there is an abundance of potential configurations to make for more efficient,
less expensive, more reliable solutions. Making sense of the dynamic com-
plexity and taking appropriate action becomes arguable the most important
aspect of the problem.

Tasking AI with micro-second to second decisions to monitor distribution
and generation and conduct automated switching is likely the only option.
The alternative becomes having a human at a screen that when prompted
complacently agrees and hoping the delay for the human approval wasn’t
too long.

Teamed decision making is well suited for tasks like forecasting, predictive
maintenance, demand side management, and cybersecurity where the AI can
remain vigilant, alert humans to potential issues, and conduct automated
analyses and reports that can be interpreted by humans for decision making.

Product Risk Classifications

I think a reasonable approach is to examine assets as classes distingui-
shed by risk. The least risky class comprises commodity consumer-oriented
devices such as home photovoltaic, battery storage, and BEVs represen-
ted distributed nano-scale devices. The capital expenditures of any single
device or installation are relatively small, and the potential consequences
of a single installation failing are relatively small. Minimal regulatory over-
sight should be required for individual installations. These devices can
charge and discharge autonomously with some high level rules for ensu-
ring safety. For example, grid tie storage devices should be smart enough
to not back feed power into the grid, and have expected features like current
protection.

In composite these nano-scale devices could be operated in a synchronized
manner to form a virtual power plant.Where the individual presence or abse-
nce of nano-scale devices have negligible impact to the grid as a whole, the
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synchronization of distributed assets could have meaningful impact on sta-
bilizing the grid while reducing emissions. Such virtual power plants should
have more regulatory oversight since there is potentially more impact (for
better and worse) to the grid when resources are operated in a coordinated
manner. The virtual power plants should have some human oversight and abi-
lity for human’s taking manual control. The centralized coordination could
also expose common cause failures or vulnerabilities (particularly cyber) that
should be considered.

The second class comprises distributed micro-scale devices like nuclear
micro-reactors and small modular reactors. These will have substantial auto-
mation compared to existing Generation II reactors. They could incorporate
remote operations and monitoring at the fleet scale, with the ability to shut
down systems locally. Disruptions would have costly impacts to an organiza-
tion or municipality. Lastly, at the other end of the spectrum are high-value
assets with the potential for low-probability high consequence events. These
would include gigawatt-scale nuclear/solar/hydro plants that might also have
flexible operations to support onsite data centers, hydrogen production,
or cryptomining. These assets would be high-value targets and disruptions
would have the potential for severe economic, environmental, and functional
consequences at large geographic scales.

When we start thinking about human oversight, participation, and deci-
sion making, the first class is consumer-oriented. Consumers will be enabled
to become prosumers (producers and consumers) sell excess or optimize
energy usage and storage based on dynamic rates. The third class of high-
value assets resembles how critical infrastructure is managed today. These
high-value assets are conservative and slow to evolve through the adoption
of automation and operational changes. They would still need to main-
tain high degrees of human vigilance compared to the other systems for
regulatory adherence and maintaining cyber-physical security and reliabi-
lity. The second class still has high regulatory requirements. However, it
is a bit of a clean slate to conceptualize operations and monitoring from
first principles with high levels of automation and mixed-initiative moni-
toring and control (AI/human teaming). In this paper we explore those
possibilities. New SMR and microreactors incorporate passive safety and
modern engineering modeling and analysis that wasn’t available during
the design and commisioning of Generation II reactors. The result is rea-
ctors that have significantly reduced risks of catastrophic melt-down events
like Fukishima. This dramatically expands the possibilities for how they
can be monitored and controlled. When we ponder what modern nuclear
control rooms should look like we envision multiple operators monito-
ring dozens of screens to maintain situational awareness and readiness to
respond at a moments notice. However, this is unlikely and perhaps even
undersired. Once reactors, in particular microreactors, have the demonstra-
ted capability of operating hands-free with minimal oversight it becomes
misguided to install humans to maintain constant vigilance (e.g. Level 4 to 5
self-driving).

The key performance indicator should be system performance not situ-
ational awareness. Having “operators” permanently installed in a control
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room when no action is required 99.9% of the time becomes a superfi-
cial level of vigilance. Take system administration as a corollary. System
administrator’s primary responsibility is to maintain the availability of infra-
structure, but their primary tasking is not to sit idly by and actively monitor.
Human Factors Engineering involves understanding the need for compreh-
ensive integration of human capabilities (cognitive, physical, sensory, and
team dynamics) into a system design, beginning with conceptualization
and continuing through system disposal. The primary concern for human
factors engineering is the need to effectively integrate human capabilities
with system interfaces to achieve optimal total system performance (use,
operation, maintenance, support, and sustainment). Human factors engine-
ering utilizes comprehensive task analyses to help define system functions
and then allocates those functions to meet system requirements. The goal of
HSI is to optimize total system performance, accommodating the characte-
ristics of the user population that will operate, maintain, and support the
system, and minimize life-cycle costs (Folds et al. 2008). HSI experts work
within the Systems Engineering (SE) process to ensure that all human con-
siderations are integrated throughout system design, development, fielding,
sustainment, and retirement. The attention to human systems integration
in system development programs drove hundreds of human-centered design
improvements. Efforts were concentrated to maximize total system perfor-
mance through improvements in human workload, ease of maintenance, and
personnel safety which resulted in a cost avoidance of billions of dollars
and prevention of hundreds of fatalities and disabling injuries for the system
(Booher and Minninger, 2003).

CONCLUSION

Here we examine current trends in energy and artificial intelligence from
the perspective of human oversight. The energy grid is a complex system
of systems with increasing capable technologies for enabling a sustainable
future. Challenges exist to leverage the vast potential of configurations and
available data to form choices that optimize personal, societal, and environ-
mental criteria. Artificial intelligence and automation will play a critical role
in future systems and technology. Work is needed to determine how to pair
human assets with machine intelligence.
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