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ABSTRACT

Nuclear power plants (NPP) operations involve hundreds of valves that direct water
around a reactor. Human errors in handling these valves create dangerous accidents
that shut down the reactor. Currently, valves are identified using paper tags that can be
damaged by water or excessive handling or have insufficient information due to a lack
of standardization for valve tags. Such inadequate instructions given in the field can
lead to workers operating on the wrong valve. This paper explores the use of computer
vision and object detection to identify valves and prevent workers from mixing them
up. It identifies computer vision as a promising solution and demonstrates the poten-
tial of a custom object detection algorithm that recognizes control objects in NPPs and
a simulation that tests how operators respond to errors to reduce mistakes operating
on incorrect control valves.
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INTRODUCTION

NPPs are complex systems that have many modules for errors to occur. Each
year in the United States, an average of approximately 80 accidents happen,
of which 50 (or 62%) are due to human errors (Nuclear Energy Agency,
2020). These errors reduce the efficiency of plants and can cause emissi-
ons leakage. Nuclear operators manipulate control objects, like valves, to
complete maintenance procedures involved in power generation by directing
water around a plant (U.S. Bureau of Labor Statistics, 2021). However, there
are many identical valves in a small area leading to errors in handling the
wrong valve. In practice, valves are identified using information tags contai-
ning as little as their normal positions or large blocks of information on their
use, position, or contents. (Occupational Health and Safety Administration,
2011). This method of differentiating valves is insufficient because tags may
be damaged and hard to read or contain inadequate information to be use-
ful in an emergency. Current efforts to reduce valve operation errors involve
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self-verification and peer checking, sending a second worker to verify valve
positions after the first worker completes the changes. However, this is high
cost and still error-prone because the second worker could misidentify a valve
or its position (Lochbaum et. al, 2017). On top of this, the committed changes
remain in place while waiting for the verification.

Computer vision techniques are promising at recognizing nearby valves,
effectively reducing operational errors. For example, one study demonstra-
ted the potential of computer vision by using an object detection algorithm
to classify workers in an NPP by recognizing the safety uniforms they were
wearing (Sun et. al, 2020). Automatic object recognition in the field helped
reduce plant shutdowns by analyzing human behavior to improve workflow
efficiency. Another study used the YOLO version 3 object detection algori-
thm in an electrical plant to detect loss of function behaviors by recognizing
objects like phones or cigarettes that cause workers to be distracted (Cao
et. al, 2021). Minimizing these behaviors will improve the efficiency of the
plant and reduce the possibility of errors. Although these studies illustrate the
potential to use computer vision to prevent misidentification errors, a com-
puter vision model for reliably detecting and distinguishing different control
valves in NPPs remains an area that needs algorithm development and testing.
Another challenge is the limited studies on incorporating real-time sensor rea-
dings in an NPP to identify critical valves given their live states measured by
the sensors.

This paper explores integrating computer vision and real-time sensors
monitoring water systems to reduce errors operating on the wrong valves.
The following sections are: 1). a motivation case to demonstrate the neces-
sity of an automated tool to prevent NPP workers’ valve operating errors;
2). a literature review to establish our work within the field; 3). the meth-
odology establishing the object detection algorithm used for NPP operation
monitoring; 4). a case study to analyze its accuracy; and 5). a concluding
section to describe the significance of our work. This approach analyzes sen-
sor data and uses object detection algorithms to identify control valves as
workers walk through a power plant to minimize the possibility of mixing
valves up. The sensor log analysis algorithm identifies critical valves that
require action, then the computer vision algorithm, the YOLO version 3
object detection algorithm, highlights them in real-time. While developing
the sensor data algorithm, we created a simulation that models valves con-
trolling water flow between tanks. Within an NPP, the simulation represents
the long cycle cleanup operation where boiled feedwater cannot contaminate
cooled feedwater. It captures random noise and is a virtual environment for
testing operators on how they react to system errors like tank overflows or
sudden influxes of water. For example, one valve oscillates around its input
value to represent the uncertainty from imperfect or leaky valves. Some noi-
ses from large influxes of water are created by oscillating the inflow with
a pulse function. Testing the developed algorithms on data from a mech-
anical room in Posner Hall at Carnegie Mellon University indicates their
potential for reducing real-time operation errors. Specifically, testing results
confirmed that control object operation is an issue, and that computer vision
provides a promising solution to this problem. Although this project focuses
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Figure 1: Baseline case of the dynamic flow simulation.

on recognizing control valves using object detection algorithms, integrating
object detection methods with NPP simulation and fault detection methods
can advance technology for nuclear safety. Such limitations necessitate future
work using other object detection algorithms to compare results and integrate
spatial data to differentiate between identical valves.

DEVELOPING A SIMULATION TO MOTIVATE THE STUDY OF
HUMAN ERRORS

There are a variety of possible human operational errors in an NPP that
each have different effects. To demonstrate how dangerous mistakes can
be and study operators’ roles in causing or preventing them, we created
a model that simulates the long cycle cleanup process in NPP operations.
The long cycle cleanup operation within the condensate system regulates
the circulation of fresh feedwater and used feedwater (or condensate). At
the same time, the reactor is shut down, ensuring that the two do not mix
(Kozal, 2017). The model was built using Simulink, a MATLAB extension,
which allows it to be dynamic and log sensor data while the simulation is
running. The model consists of four tanks and five valves (1 automatic con-
trol valve and four manual control valves). It simulates how water flows
between four tanks. As shown in Figure 1, water enters through Tank 1,
is decontaminated as it cycles through Tanks 2 and 3 as needed and exits
the system as purified water in Tank 4. An overflow in Tanks 1-3 could
contaminate the water in Tank 4. Each tank has a sensor that outputs the
water level inside it with a warning light for when it exceeds a set overflow
value. Each valve also has a warning light activated by the valve position
exiting a 30-70 range to create multiple objectives within the simulation.
As shown in Figure 2, the model alerts operators when they have made an
error.

As shown in Table 1, valves can be automatically or manually controlled,
or users can switch between the modes in real-time. Automatic valves respond
to the inputted value of the previous tank with a sine wave that simulates
random environmental noise. The function oscillates with an amplitude of 10.
Additionally, the inflow rate automatically follows a sine function added to
a pulse function to represent large influxes of water that might occur during
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Figure 2: Error case of the dynamic flow simulation.

Table 1. Valve types in the
simulation.
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Figure 3: Simulated sensor log of the water level in each tank during an iteration of the
simulation.

weather events. Figure 3 demonstrates the recorded sensor data of the water
levels in each tank. This log depicts how the system reacts to changes made
by operators while capturing environmental noise. This data can be used to
assess how successful operators are at manipulating the system to prevent
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or respond to errors. A similar log can be generated based on the sensor
warnings to provide an additional evaluation method. Overall, the simulation
motivates this research by demonstrating the consequences of operational
errors in a model of a closed loop system in an NPP.

LITERATURE REVIEW

Many NPPs have begun searching for ways to use technology to respond
to errors made by plant operators operating on the wrong valve to increase
safety and efficiency. The current practice uses information tags to identify
valves, but there is no standardization around what information must be on
the tags. Therefore, some tags have too much information, making it hard to
identify the valve, and some have too little which means they are not helpful
in emergencies (Occupational Health and Safety Administration, 2011). One
solution is using neural networks that take in signal data from the plant to
diagnose and correct human valve errors after a fault has occurred, reducing
the number of factors operators need to consider. An example of this is a study
that used a neural network that put sensor alarm and gauge data through a
Markov chain in a matrix to determine the most critical alarm, diagnose the
fault, and propose the best anomaly handling procedure, but left the final
decision up to the operator (Hsieh et al, 2012). A similar study followed the
same basic structure. However, it categorized errors, such as loss of coolant
or steam line rupture, into different neural networks that could memorize
similar patterns for more accurate results (Mo et al, 2007). Both solutions are
retroactive for emergencies; they respond to valve errors rather than predict
and prevent them.

However, many faults occur during repetitive tasks like operating valves
which is prone to errors operating on the wrong valve because it is mun-
dane and boring for operators. Taking human error out of valve operating
would be a more effective solution because it prevents faults in the first place.
Recently, surveillance data has been combined with fault diagnosis systems
in a preliminary attempt at plant monitoring (Wang et al, 2016). Another
study used passive resistive sensors to monitor valve position automatically
and display it to a central panel (Agarwal et al, 2016). A different solution
used in the oil and gas industry is the VIKINGS robot that detects a valve
by matching its image to SIFT descriptors and uses a color-based method
and a neural network to determine the position of the valve (Merriuax et.
al, 2019). This technique is designed for butterfly valves used in oil and gas
plants. However, the research in this paper can support similar robots to
identify gate valves used in NPPs to increase safety and efficiency around the
plant.

Computer vision techniques have great potential to eliminate human errors
in power plants through real-time detection of safety-critical objects for field
workers. For example, one study used a human joint detection algorithm
to track workers as they completed tasks to analyze human behavior to
improve the efficiency of the plant by avoiding shutdowns (Sun et. al, 2020).
Another study used an object tracking algorithm to analyze the behavior of
human operators around a crane to increase worker safety during power



28 Kochanek et al.

plant outages (Zhang et. al, 2016). However, computer vision has rarely
been used to help workers recognize control valves. The challenge in applying
computer vision for valve detection lies in rapidly and reliably identifying the
difference between many identical valves (Redmond et. al, 2018). The discus-
sion above leads to the formal research question of this paper - How can we
diminish emissions leakage by reducing errors operating on control valves
incorrectly in NPPs?

BUILDING AN OBJECT DETECTION ALGORITHM

The proposed solution to the research question is to use computer vision
by training a custom object detection algorithm. To do this, we needed to
gather data in the form of images, label our dataset, train the algorithm,
and test its accuracy. We used the website makesense.ai to label our ima-
ges by bounding what were predetermined to be critical control objects and
giving each a class name. Then we built a YOLO version 3 algorithm in
Google Colab because of its cloud connection and free GPU (Google Colab,
2018). YOLO algorithms are beneficial because they run significantly faster
than other detection methods while obtaining similar results in terms of
the mean average precision and intersection over union values (Redmond
et. al, 2018). They are also pre-trained using open-source data to support
many classes, so they are useful in a wide variety of situations, and their
functionality can be tested beforehand. YOLO version 3 is a Region-Based
Convolutional Neural Network-based algorithm that uses DarkNet53 to
extract features. The training process of this algorithm is to show a sam-
ple of labeled images to initialize its weights. Then the network tries to
predict the bounding boxes of the manually labeled dataset through a sele-
ctive search algorithm and calculates the intersection over union ratio of the
ground truth object box to the predicted one to update its weights using a
regression model. Version 3 is smaller than more recent versions while still
training to a comparable accuracy. After the training, we focused on the
algorithm’s percentage loss and confidence in predictions as markers for its
accuracy.

In general, object detection is a promising solution because algorithms use
existing data to improve their accuracy with each iteration. They can also
be adapted to different formats as required for various industrial plants and
different interfaces such as computers, phones, or even wearable glasses. Since
their structure is basic, object detection algorithms are explainable and can
be expanded upon as technology improves. Finally, although the bias from
the programmer is included, object detection algorithms minimize bias from
the user.

CASE STUDY

We applied this methodology to a mechanical room in Posner Hall at Car-
negie Mellon University to test the algorithm. The dataset was constructed
using data obtained by videotaping a walkthrough of the room and extra-
cting every tenth frame for 868 images. Then, the control valves, sensors,
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Figure 4: Percentage loss of the YOLO object detection algorithm after each
iteration.

Figure 5: Objects labeled by the algorithm with its degree of confidence in the
predictions.

signal lights, electrical carbines, and chemical tanks in each frame were manu-
ally bound and labeled before being exported as text files. After converting
the annotations to the YOLO format, we configured them using batches
of 64 and subdivisions of 16. We set the maximum number of batches to
10,000 for five classes with 30 filters. Once the algorithm was trained at
an average learning rate of 0.001, we tested the accuracy by plotting the
percentage loss after each iteration as shown in Figure 4. The training resul-
ted in a percent loss of about 0.3% after 2,700 iterations, well below the
standard of less than 2% loss, indicating an accurate algorithm. The results
of this case study are an accurate, fully functional object detection algori-
thm trained to support the classes identified as control objects in an NPP, as
demonstrated in Figure 5. This algorithm can bound and label each class in
real-time as it is fed in live video and output the degree of confidence in each
prediction.
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CONCLUSION

During this project, we identified that control object operation is an issue,
and that computer vision provides a promising solution. As part of this, we
trained a custom object detection model to recognize parts in NPPs and desi-
gned a simulation that collects environmental noise to test how operators
respond to errors. Our solution has environmental benefits by reducing the
number of accidents which minimizes radioactive leakage. It also leads to
more efficient operating by limiting how often a plant must be shut down,
generating more energy, and increasing profits. This makes NPPs a more
viable alternative to fossil fuels by increasing their reliability and reducing
emissions (Hitchin, 2016). Our algorithm can create a safer workspace for
NPP operators and support technological advancements made by future pro-
jects. It can be used in a variety of applications. For example, it can be
programmed into robots that are used for disaster relief in situations that
are too dangerous for humans.

However, this solution is limited because object detection algorithms can
only identify parts, not recognize their location within a plant or which are
important to the work order. Further, it cannot recognize partially expo-
sed objects. Also, our algorithm was only trained with one dataset, and we
did not explore other object detection algorithms, which adds potential for
error. Similarly, we iterated through the algorithm 2,700 times instead of the
recommended 10,000 due to time constraints, but the percentage loss was
under 2%, so the algorithm is still highly accurate. More broadly, compu-
ter vision cannot actively prevent errors. It is only successful if operators
use it. It is also not intuitive or compassionate and can only operate how it
was programmed, making decisions based on inputting specific data. Com-
puter vision techniques also amass data, which causes privacy concerns over
how data is collected, stored, and used. Although, the emergence of fede-
rated learning algorithms which can be transferred between users without
sharing the data used for training creates a potential solution to this (Cheng
et al, 2020). Finally, it necessitates future work comparing the accuracy of
different object detection algorithms and fitting our algorithm to different
interfaces and applications.
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