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ABSTRACT

Introducing machine learning (ML) assistance into any established process comes with
adoption barriers, including entrenched procedures, technological and human rea-
diness levels, human-machine trust, and work culture resistance to change. These
barriers are even greater in critical operations such as operating a national or regional
power grid, in which both regulatory frameworks and the importance of maintaining
reliability levels causes additional resistance to the adoption of new computational
support. Developers of future systems and job aides must consider not only technical
aspects, but also whether new systems are usable by power system operators. This
work presents the methodology and results of a study to evaluate the usability and
readiness of a prototype recommender system for power grid contingency analysis.
We explore operator cognitive load and evaluate operator performance when solving
a collection of scenarios both with and without recommender assistance. We also exa-
mine operator trust in the system. We report insights gained on the readiness of the
system using a collection of evaluation techniques.
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INTRODUCTION AND BACKGROUND

Introducing automation into established workflows and processes is diffi-
cult. Factors that affect technology adoption can range from difficulties with
novel systems (e.g., reliability and usability) to organizational constraints
(e.g., access to training and data continuity) and more (Ertmer, 1999). Intro-
ducing machine learning (ML) presents still further challenges, including lack
of trust in decision-making and results (Hoff and Bashir, 2015), loss of user
autonomy (BenMessaoud et al. 2011), and increased workload during the
adjustment process (Ludwick and Doucette, 2009).

One field that frequently struggles to incorporate such new techno-
logies is power systems. Though the introduction of artificial intelli-
gence into power system operations was first proposed in the 1980s
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(Wollenberg and Sakaguchi, 1987), challenges with control room work cul-
ture tend to stifle technological innovation. However, recent thrusts into
renewable energy may necessitate the introduction of advanced algori-
thms to better forecast generation in solar and wind energy (Makarov
et al. 2011). Techniques such as reinforcement learning are generating inte-
rest for autonomous voltage control and smart grids (Zhang et al. 2018).
Future power systems must consider not only technical aspects but also tech-
nology (Mankins, 1995) and human (American National Standards Institute,
2021) readiness levels (TRL and HRL), adherence to existing operatio-
nal procedures, human-machine trust, and situational awareness of grid
performance.

In this work, we present the methodology and results of a study to measure
domain expert trust, elicit feedback, and understand technological usability
and impact when a machine learning decision support assistant is introduced
into contingency analysis for real-time power grid simulation. We evaluate
the usability and readiness of a prototype recommendation system called
ACAT (AI-Based Contingency Action Tool), a neural network which recom-
mends contingency mitigations in order to quickly address potential power
grid violations (Chen et al, 2019). Our study makes use of multiple data
acquisition and processing techniques to evaluate the ACAT system, inclu-
ding assessing operator performance via analytical performance functions,
inferring operator cognitive load with heart rate variability (HRV) data,
and capturing operator feedback with both structured surveys and semi-
structured debriefing interviews. We report the insights gained from these
techniques separately and in combination, and we discuss their implications
on the future of ML for power grid operations.

EXPERIMENT DESIGN

Our goal was to evaluate the current usability of ACAT. This system serves
as a recommendation provider, displaying recommendations to remediate
contingency analysis (CA) violations. An artificial neural network (ANN)
and a semi-supervised corrective action algorithm display a sequence of con-
trol actions to the operator as a recommended procedure for resolving the
contingency. This experiment was designed to replicate the naturalistic deci-
sion making processes used by power system operators first documented by
Greitzer and Podmore (2008).

Control Room

The experiment was conducted in the Electricity Infrastructure Operati-
ons Center (EIOC) West Control Room at Pacific Northwest National
Laboratory (PNNL). The EIOC provides a functional, configurable, and
pragmatic simulated control room environment for transmission and distri-
bution system operations and contains 16 operator consoles arranged at three
control desks, connected to a dedicated network and server enclave. The con-
trol room also features a 12m x 3mmultiplexing video wall system. The reali-
stic control room environment provides opportunities for conducting studies
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involving human factors, cognitive systems engineering, human-machine tea-
ming, and evaluation of new systems and technologies relative to operator
cognitive load.

Experiment Procedures

To simplify the experiment and focus on the role of the ACAT recommen-
der, it was determined to use only a single participant per experiment who
served in multiple control room roles (i.e., as reliability coordinator, bala-
ncing authority, and transmission operator). One of our primary goals was
to provide an example of how early TRL technology can be evaluated to
assess and improve the technology’s HRL and TRL simultaneously. ACAT,
at the time of this study, was at a TRL of 3. During each trial (which lasted
roughly 10 minutes), the participant was responsible for identifying the con-
tingency analysis violation, determining mitigating control actions, and then
implementing those control actions on the real-time simulation of the power
system. The experiment took place over the course of three partial-day ses-
sions. The first day included a training session, so that the participant had
time to work with the simulated grid and become familiar with the reliability
of the ACAT software. Following the training session, the participant was
presented with scenarios of varying difficulty and asked to resolve the con-
tingencies in each scenario. These trials alternated between two experimental
conditions: solving a scenario while having access to the ACAT recommender
and solving a scenario without the ACAT recommender. Each of the scena-
rios was tested under both experimental conditions, but the participant did
not see a scenario twice on the same day. Following each trial, the participant
completed a survey appropriate for the trial condition.

Participant

Due to the significant time investment required to participate in the study, as
well as COVID safety considerations, we provide an application of the meth-
odology with a single representative user to assess the current HRL state
of ACAT and identify improvement areas. Currently working as a Power
SystemResearch Engineer, our participant has a breadth of expertise in power
systems, including real time control room operation, implementation, and
deployment of real-time applications such as SCADA, State Estimator (SE),
real time contingency analysis, real-time voltage and transient stability, casca-
ding outages, and deployment of Energy Management Systems (EMS). The
participant holds a PhD in power systems, has previously worked for multiple
power utilities, and has experience in various operation and planning studies.

METHODOLOGY COMPONENTS

The methodology used in this study is intended to incorporate the rapid
acquisition of objective (heart rate variability data and performance scoring
computations), subjective (survey results), and qualitative (semi-structured
interview) feedback from a participant. From this methodology, we are able
to glean data used to measure domain expert trust, cognitive load, and the
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technological usability and impact of a new system, as well as to identify
potential correlations between these measures.

Heart Rate Variability

Participants are fitted with a Zephyr bioharness, a commercial device capa-
ble of measuring six inputs and reporting more than twenty biometrics,
including heart rate variability (HRV). Because of the demonstrated conne-
ction between decreases in HRV and increases in cognitive load (Aasman
et al. 1987), HRV is used as a cognitive load proxy throughout the dura-
tion of an experimental trial. Data is collected from the bioharness using
the accompanying OmniSense software. The OmniSense software corrects
for outliers and calibrates to the wearer. Electrocardiogram (ECG) data is
averaged for comparison across the two experimental conditions.

Performance Scoring

In this domain, there can be many ways to solve a given contingency. The
dimensions in which performance is measured include time to solve, severity
of remaining violations, financial costs to take mitigating actions, and down-
stream consequences that may include contributing to a future grid issue.
Since our aim with this human factors work overall is to provide a generaliza-
ble framework, we measure factors that are not particularly tied to the power
systems industry and that have some standing in the human factors literature
as generally meaningful to performance. These metrics include completion
times, number of actions taken per evaluation, and number of evaluations
per trial. These behavioral measures have ties to cognitive load measures,
workload measures, and often are used to determine task difficulty. Here, we
primarily use them to support findings from other measures.

Surveys

Participants receive a modified version of Madsen and Gregor’s Trust Que-
stionnaire (Madsen and Gregor, 2000), with versions of the questionnaire
tailored for the two experimental conditions. This self-report questionnaire
measures several constructs believed to underlie trust in a system. Accor-
ding to Madsen and Gregor, a system is trusted if participants perceive
it as understandable, technically competent, and reliable, comprising the
Cognitive-Based component of trust. In addition, participants who have faith
in a system and a personal attachment to the system will be more likely
to trust the technology, comprising the Emotion-Based component of trust.
For each item, participants are asked to rate their agreement with a state-
ment on a 5-point Likert scale. Additionally, several items are included in the
questionnaire to assess the importance of each construct in participant trust.

Post-Experiment Interview

Throughout the experiment, we collect qualitative feedback from partici-
pants as they comment on their actions and describe their approach towards
solving a scenario. Because we are measuring cognitive load, participants are
not explicitly asked to follow any think-aloud procedures, but we interact
with them as they work through each study trial. Following the study, we
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also conduct a short debrief, gathering additional feedback on the technolo-
gical readiness of the system. This information is aggregated and summarized
to provide structured feedback to developers working on the next iteration
of the system.

RESULTS AND DISCUSSION

The sections below describe the results of each component of the methodo-
logy. Notably, we find common themes that connect the various components
of our methodology. For example, the slight increase in cognitive load
identified in the HRV data is also explained by distrust in the ACAT recom-
mendations identified in the survey results, while the qualitative feedback
indicating that the participant often disregarded the ACAT recommenda-
tions is supported by a lack of performance differences between the two
experimental conditions.

Heart Rate Variability (HRV)

This HRV analysis seeks to identify periods of increased cognitive load
through observation of lower variation in heart rates. The observed
trials began with average heart rate standard deviations ranging from
35-50 milliseconds, which typically stayed in that range for the first
2-3 minutes of the trial. Both the with and without ACAT data sets show
clear decreases in variability (and hence increases in cognitive load) as tasks
went from the three-minute to the five-minute mark (see Figure 1).

Overall, the HRV scores showed a slight increase in cognitive load earlier
while using the ACAT recommender. Ideally, introducing a recommender into
a workflow would decrease cognitive load rather than increase it. As seen in
the qualitative feedback, this could be due to a lack of operator comfort with
the tool, distrusting its recommendations and thinking too critically about
their quality and effectiveness. Operator training on future versions of ACAT
could change this result. Additionally, using the same participants in these
studies across multiple development and evaluation cycles can benefit both
the participant and the study, as the participant will come into the study with
some previous knowledge of system capabilities and prior quality.

Figure 1: Participant heart rate variability averaged over all trials, separated into the
with- and without-ACAT experimental conditions.
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Figure 2: Completion times and average numbers of actions taken by the study
participant in both experimental conditions.

For tasks completed in less than five minutes, the HRV generally main-
tained a standard deviation of at least 30 milliseconds. This indicates that
quick completion of tasks staved off a heavy cognitive load. If operators
can trust ACAT sufficiently to accept and implement its recommendations
quickly, overall cognitive load for operators may decrease across their full
workflow. After the five-minute mark, the cognitive load remained heavy
on average, corresponding with the implementation phase during which an
operator must communicate the mitigation steps to others. Once a solution
had been reached, the workload was similar with andwithout ACAT,which is
unsurprising since ACAT no longer plays a role in the workflow at this point.

Performance Scoring

We collected completion times, number of actions per evaluation, and total
number of evaluations per scenario/trial. While on average the participant
was slightly faster without ACAT, this difference is not statistically significant.
Similarly, there was no noticeable difference between ACAT scenarios and
no ACAT scenarios with respect to number of evaluations. When average
number of actions per evaluation is considered, we again find a slightly fewer
number of average actions for no ACAT scenarios, but not enough to drive a
statistical difference.

During the two days of testing with our participant, there is behavioral evi-
dence that suggests he preferred to resolve contingencies using the operations
manual and his tacit knowledge rather than relying on the ACAT recom-
mender. The scoring analysis indicates little difference between participant
performance in both experimental conditions (see Figure 2). The incorpo-
ration of ACAT into the contingency analysis workflow did not drastically
improve or degrade the operator’s performance. This lack of statistical dif-
ferences is partially due to the participant’s tendency to disregard the ACAT
recommendations, which is evidenced by the trust results from the survey and
the qualitative feedback.

The participant indicated that short completion times in later trials were
due to his progressively greater familiarity with the simulated grid over the
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Figure 3: Mean rating across all trials for each cognitive- and emotion-based con-
struct of trust as a function of experimental condition (with or without ACAT
recommendations).

course of the experiment, not an effect of seeing the ACAT recommendation
when this scenario was presented on the previous day. It is likely that additio-
nal training and exposure to this grid by experienced participants could lead
to additional efficiency boosts in other scenarios during future experiments.

Survey Outcomes

Trust results from the survey indicated that our participant had an overall
lower trust in the ACAT recommendations than in his personal expertise and
in the operational procedures. This also matches the qualitative feedback that
was captured; the participant did not feel that he had sufficient exposure to
ACAT to judge its reliability. In five of the six scenarios, trust in ACAT was
lower than trust in Operations Procedures for all constructs (see Figure 3).

Only two scenarios did not reveal lower trust in ACAT than in Operations
Procedures across trust constructs. In one case, this was due to low trust in the
procedures for resolving the contingency. In the other, Emotion-Based trust
remained lower for ACAT (particularly seen in the Faith construct) whereas
Cognitive-Based trust was comparable. An explanation for lower Emotion-
Based trust ratings in this scenario may be the need for more exposure. The
time needed to develop positive affect toward a system may be greater than
the time needed to perceive that a system is functioning reliably, accurately,
and is understood.

The importance of each trust construct was compared to its mean rating
for ACAT. The results reveal that Personal Attachment is less important than
other constructs in contributing to overall trust in ACAT. In all cases, the
mean construct rating (ranging from 1.7 to 2.3) was lower than the perceived
importance of the construct to overall trust (ranging from 3.0 to 4.0). The
construct Understandability varied the most across items for all six scenarios.
Overall, the survey results suggest it may not be enough to simply improve
system transparency as a technique for building trust. Developers should also
consider improving performance in order to increase trust.

Qualitative Feedback

The semi-structured debrief captured participant feedback about both the
current state of ACAT and the struggles that the participant encountered



Operator Insights and Usability Evaluation of Machine Learning Assistance 47

when considering the system recommendations during the experiment tri-
als. With respect to the tool, the participant identified several usability issues
that were not considered by the developers. Most notably, ACAT used bus
numbers rather than substation names. Because operators are more fami-
liar with the names, they would encounter additional work in converting
the ACAT recommendation into an actionable recommendation. Recom-
mendations generated by ACAT also differed from common operational
practices, leading to lower trust in the system recommendations. This ten-
dency to trust the operational procedures and personal experience over the
recommendations matches the trust measures uncovered in the survey results.

DISCUSSION

The discussion around artificial intelligence in the workplace often centers
on the capabilities of the machine, proposed benefits to user workflows, and
assumes increased efficiency. Our work aims to balance the conversation by
emphasizing the human teammate/user and the very real, but often not thou-
ght about challenges to adopting and using semi-autonomous tools. This
work provides an example of how to measure these challenges and identify
gaps in tool development as they relate to the end-users that will ultimately
be responsible for deploying them. The authors realize that for society, the
introduction of technology has often meant replacing human workers with
autonomous ones and that livelihoods are impacted by the tremendous push
for more automated procedures. We hope that our work shows that humans
are a critical component to the adoption of many proposed AI technologies.

Limitations and Future Work

In this study, we evaluated the ACAT system using a single participant. The
availability of control room operators has been extremely limited due to
COVID and the critical nature of Power Grid operations. Our research team
does plan to conduct a more robust study with several engineers using the
methodology. Our performance metrics were also coarse and aimed only to
provide a high-level view of our participant’s mitigation of power system vio-
lations. The authors note that more nuancedmetrics can be developed for this
specific application domain. The ACAT tool used for this study revealed seri-
ous limitations in its ability to consider other aspects of decision making for
violation mitigation. ACAT was biased toward actions that did not match
operational procedures, and the system usability would be improved with
closer connections between developers and operators.

CONCLUSION

This work presents a methodological approach applied to evaluating an AI-
Based Contingency Action Tool (ACAT), a recommendation system designed
to aid power system operations in their decision-making process for resolving
potential violations in power grid equipment and state. We capture objective,
subjective, and qualitative measures during a controlled experiment with two
conditions: the operator’s standard workflow that makes use of personal
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expertise and an operations manual vs. the inclusion of the AI-based recom-
mender to provide mitigation options. As a result of our study, we identified
several key issues with the ACAT system, ranging from usability concerns to
mismatches between the system recommendations and current operational
procedures. Collecting this feedback rapidly and delivering it to developers
can aid in accelerating the development and evaluation cycle of ACAT, assi-
sting in its deployment into control rooms sooner than the typical slow pace
of novel applications in this domain space.
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