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ABSTRACT

Manual control of robotic arms is challenging, and productive operators require exten-
sive prior training. Effective training should systematically vary the difficulty level of
the robot arm motions. This study investigates the extent to which Fitts’ law could
define movement difficulty for bimanual controlled movements of robotic arms. Inspi-
red by forestry work-methods, we designed Fitts’ tapping task to assess the movement
time and throughput of ten unskilled participants over nine training sessions. We found
that robotic arm movements observe Fitts’ law for reaching in depth but deviate for
lateral and concentric movements. In other words, training can utilize Fitts’ law to
vary the difficulty of forward robot arm movements. Further studies on the difficulty of
lateral and concentric movements are necessary to refine work methods and improve
training.
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INTRODUCTION

To control articulated robotic arms, such as forest harvesters, operators must
learn how to simultaneously transform multiple independent degrees-of-
freedom. Extensive simulator training and field training is currently necessary
before operators are sufficiently skilled to operate safely and independently.
Such training is costly and could be more efficient.

To begin, not all movements are equally difficult not likely to be required.
Although operators are often expected to exert nimble and flexible control of
robotic arms to actuate a diverse repertoire of manoeuvres and cope with all
exigencies. On the other hand, some movements are typically more frequent
than others, especially when the operational context is taken into conside-
ration (Ranta, 2009). In forestry, the frequency of the robot arm (crane)
movements result from well-specified work requirements. For instance, in
clear felling, trees are required to be felled in the direction of travel (i.e.,
machine trail) and produced logs should be placed alongside the machine
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trail. The most productive methods are ‘Two-Sided Piling’ and Forward Fel-
ling’ in clear cuts (Ovaskainen et al., 2011). Further, a narrow fell swath in
the direction of travel increases productivity (Nordberg, 1987). Superfluous
movements and trajectories, though possible, render operations inefficient
(Ovaskainen et al., 2004). Currently, machine operators in training are only
exposed to a variety of situations that place demands on the complexity of
crane movements (e.g., number of segments served simultaneously, Wickens
et al., 2013). Instead, tasks should be presented that scale with the growing
aptitude of the trainee. However, it is unclear howmovement difficulty ought
to be defined and operationalized.

In human aiming movements, movement difficulty can be systematically
varied using Fitts’ tasks. The current work is motivated to situate the dif-
ficulty of moving robotic arms within a such a framework or one that is
comparable. The movement difficulty of Fitts tasks are operationalized in
terms of the information capacity of the human motor system (Fitts, 1954).
Typically, subjects perform repetitive aiming movements to tap alternatin-
gly between two targets. The information capacity required to perform this
repetitive movement can be defined in terms of the size of the targets and
the distance between them (Soukoreff and MacKenzie, 2004). The task is
frequently amended for specific applications i.e., to evaluate performance of
varying (tele-operated) robotic arm movements (Draper et al., 1990; Jung
et al., 2013; Suzuki and Harashima, 2008). However, Fitts’ task was origi-
nally intended to study human aiming movements and not the movement of
robot arms.

In summary, the extent that Fitts’ law can be applied to human controlled
robotic arm motions in the forest context is unclear. Operator must move
their arms to operate bimanual controls that actuate robotic arm movement.
However, the amplitude of these manual movements do not correspond dire-
ctly to the actuated robot arm movement—robot arm movement is indirectly
controlled by the angular velocities of the robot joints. Thus, operators must
learn a nonlinear transformation to map their own motor actions onto the
robot arm. In this paper, we use Fitts’ law as a theoretical framework to
manipulate the difficulty of crane motions. If Fitts’ law applies, manipulati-
ons of target distance and target size according to the relationships derived by
Fitts should lawfully govern performance indicators such as movement time
and information throughput (Fitts, 1954). Furthermore, we are interested in
the extent that learning the robot arm movements affects Fitts’ performance
indicators.

METHODS

Participants and Apparatus

Ten (6f, 4m) volunteers with an average age ofMage = 28 years (SDage = 9.29)
learned to operate a robotic arm simulator across nine successive sessions. All
participants had no prior experience in the task and robotic arm control. The
robotic arm simulator consisted of a Grammar seat (Chicago 1040673-C)



116 Dreger et al.

with two mounted joysticks (Thrustmaster T.16000M FCS) and a Sam-
sung 55” TV Screen (Samsung LE40C750R2Z). The simulation software
comprised C++, ROS, and GAZEBO.

Robotic Arm Simulation and Stimuli

The simulation provided a manipulator (open manipulator) with four arti-
culated joints and an end effector (gripper) (ROBOTIS Inc., Korea). The
manipulator had 4 degrees of freedom and was simulated in GAZEBO. Par-
ticipants were presented with a tilted view, centred on the manipulator on a
gridded ground plane (Fig. 1).

Figure 1: Displayed is the simulator setup (a), the Targets in purple (b) and blue
(c) colour are shown from the perspective of the participants.

Movement targets were displayed as blue and purple circle pairs
(W = 0.5cm) on the ground plane. Blue indicated that tapping should begin
on the left side and purple, the right side. There was a visible circle on each
side of the robotic arm. The distances between them and their locations were
selected such that the movement patterns (e.g. movement direction) were
comparable with contemporary working methods (i.e., two-sided and forw-
ard felling; c.f. Ovaskainen et al., 2011). These diagonal patterns (Fig. 2)
varied in amplitude (D, spacing) and required participants to exploit all
possible DOFs of the robotic arm.

Figure 2: Shown are the predefined movement trajectories (a, start left; b, start right).
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Fitts’ law assumes that motor performance can be described by the math-
ematical concept of “information”. The amplitudes of aiming movements
are considered analogous to the information of transmitted signals, and
the spatial accuracy (variability) of movements is considered analogous to
system noise. Since Fitts’ law treats the human motor system as a commu-
nication channel, the bandwidth (or information throughput) of movement
can be expressed in bits/s. Thus, the difficulty of a motor task can be quan-
tified by the difficulty index (ID in bits), which is the logarithmic ratio
of target distance (D) and target width (W), ID = log2 (D/W + 1).
Fitts’ law predicts that movement time (MT) increases linearly with the
difficulty index ID, MT = a + b ID. The effective difficulty index
IDe = log2 (D/We + 1) achieved is used to calculate information throu-
ghput TP = (IDe/MT) in [bits/s]. Here, the effective distance We, defined
by the variability of the executed aiming movements, is taken into account
( e.g., MacKenzie, 1992). The current study kept target width constant
(W = 0,5cm) and target distances between circles (D) where selective to
derive a effective ID range (ID =2.49, 3.09, 3.35, 3.92). Balanced for star-
ting position, this resulted in eight target combinations (for further details see
Soukoreff & MacKenzie, 2004).

Procedure

Participants first provided signed consent to written instructions. Next, the
participants sat in the simulator and received task instructions, followed by a
short training of four movements between targets (W = 1.5cm). Next, the
task began, and participants tapped each target ten times, returning nine
recorded movements for each randomized target within one experimental
Block. A session consisted of six Blocks. Altogether, participants comple-
ted nine sessions and generated 4320 movements in total. A Session lasted
from 3.5h to 1.5h depending on the learner’s skill level and progression in
the experimental series. After the task, participants filled a questionnaire on
demographics and co-founding variables (i.e., joysticks use).

Design

The study was conducted as 2 (left, right) x 4 (index of difficulty) x 6 (Block)
x 9 (Session) repeated-measurement design.

RESULTS

The data was pre-processed and analyzed in MATLAB (v.2021a) and R
(v.4.1.1).

Performance and Learning

Task performance was operationalized asMT and throughput. According to
Fitts’ law, both are expected to increase with the index of difficulty of the
aiming movements. An repeated-measures Analysis of Variance (ANOVA),
with main factors of ID (4 levels) and Sessions (9 levels), showed a signifi-
cant effect of IDs on movement times (F(1.15, 10.39) = 38.10, p < .001,
ω2

p= 0.57). Post-hoc pairwise Tukey adjusted comparisons revealed that
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MTs increased with difficulty from IDs 2.49 to 3.35 bits and abruptly decre-
ased for ID = 3.92 bits—MTs did not significantly differ between ID = 3.92
bits (M = 8.51s, SD = 2.51s) and ID = 2.49 bits (M = 8.21s, SD = 2.89s,
p = .212; see Fig. 3).

Figure 3: Movement time in seconds as a function of Fitts Index of Difficulty and
experimental sessions. Dots indicate observed data and straight lines indicate linear
prediction of movement time according to Fitts Law. Session is represented by
color.

Two separate one-way repeated measures ANOVA were conducted to
analyze the throughput for the factors of ID and sessions and revealed that
throughput increases with higher IDs, (F(1.04, 9.37) = 58.39 p < .001,
ω2p = 0.66) and later session (F(8, 72) = 84.70 p < .001, ω2p = 0.007)
(c.f. Fig. 4).

Figure 4: Throughput in bits/s per index of difficulty shown for each session, separately.

Learning Maximum

Throughput should increase with motor skill development but can be expe-
cted to be limited by the maximum achievable performance level. This could
provide insights into remaining gains and the efficiency of the given training
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protocols. Thus, we expected throughput to increase with Sessions to the
asymptotic maximum.We fitted an exponential functionVinf+αse

-γ
s
n, where

Vinf denotes performance that is the estimated maximum achievable TP, αs
is the start value, γ is the rate in increase of throughput and n the num-
ber of experimental sessions. The fitted exponential curves (Fig. 5) show that
ID = 3.92 bits shows the highest maximum throughput with TP3.92 = 0.032
bits/s. This contrasts to the other IDs TP2.49 = 0.02 bits/s, TP3.09 = 0.021
bits/s, TP3.35 = 0.014 bits/s. Further, there was a significant interaction of
ID and session (F(24, 216) = 9.13, p = .001, ω2p = 0.07)). Learning pla-
teaus with more training sessions and, hence, lower gains are achieved the
closer performance gets to this asymptote. Mostly, skill development is ach-
ieved before expert level thus it is useful to have an approximation of when
improvements are no longer significant. We performed planned Tukey adju-
sted contrasts for all consecutive sessions there were no significant differences
after session four (p1-2; p2-3; p3-4 < .001, p4-5 = 0.12, p5-6 = 0.84, p6-7 = 0.57,
p8-9 = 1.00)).

Figure 5: Information capacity (throughput in bits/s) plotted across experimental
sessions by each index of difficulty. Solid lines show fitted function.

DISCUSSION

This study sought to clarify if Fitts’ law could be applied to pre-determine the
movement difficulty of robotic arm movements in forestry work methods.
If true, it could inform the design of how tasks are scheduled for operator
training. To this end, we evaluated how useful Fitts’ index of difficulty is in
defining the progression of acquired skill.

We found that movement time and throughput of the 4 DOF robo-
tic arm followed the prediction of Fitts’ law for three (ID = 2.49, 3.09,
3.35) out of four IDs independent of skill development over training. As
expected, learning causesmovement times to decrease and information throu-
ghput to increase with sessions. Both, movement time and information
throughput showed saturation effects, that allowed to estimate the required
maximum training effort and revealed that the ID = 3.92 bits appeared to
stand out. Interestingly, movement time and throughput of the ID = 3.92
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bits, do not agree with Fitts’ predictions. Here, performance is surprisin-
gly similar to ID = 2.49 bits. In other words, motor control for a task
that was predicted to be difficult, was in fact, simpler to perform. Pre-
liminary analyses suggest that our participants adopted a different motor
control strategy for ID = 3.92 bits, which could have accounted for this
non-linearity. The distance from left to right is mainly bridged by a slew-
ing motion that can be realized by a single joystick axis input. In addition,
the concentric movement allows for targets close to the orbit to reduce
the invested joint range (overall or specific i.e., by not using the gripper).
Such strategy facilitates control demand and would lead to an optimized
speed compared to the lower presented IDs where movements are not close
to the slewing orbit. Follow-up studies could verify this by assessing the
effect of lateralization in IDs and distance to the orbit of the concentric
movement.

Our study revealed that robotic arm movements’ difficulty can be descri-
bed for movements in front/in depth of the manipulator by Fitts’ law.
Selectively, training difficulty can thus be tailored in accordance with Fitts’
ID. Concentric movements ease motions where the actual difficulty is yet to
be systematically operationalized. In regard to forestry work methods, we
can conclude for working close to the front midline that short tree hand-
ling distances are favorable over longer distances and larger tolerances over
small tolerances in harvester head positioning. This is in line with work meth-
ods that recommend working close and in front of the machine. However,
long movements that consist mostly of concentric, slewing motions keep
up with short tree handling times and distances. Still lateral and concentric
movements need further research on their actual demand and the applica-
tion of Fitts should therefore be used with caution in movement difficulty
description.
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