Training, Education, and Learning Sciences, Vol. 59, 2022, 48-55 AH FE
https://doi.org/10.54941/ahfe1002383 |hternational

Design Interactive Teaching Tools of
Programming Language for Senior
High School Students

Yu-Ting Huang' and Chien-Hsu Chen?

TIndustrial Design Department, National Cheng Kung University, Tainan, Taiwan
2Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung
University, Tainan, Taiwan

ABSTRACT

In recent years, with the continuous advancement of technology, modern people live
in the context of the digital age and began to realize the importance of programming
languages. Programming education has become an important part of basic education,
and more and more people are beginning to attach importance to computer science,
programming logic, and computational thinking. In high school, programming langu-
age courses are a difficult subject for many students. Not every teaching aid is suitable
as a classroom-aided learning tool, especially for high school students, which at the
same time should be easy to apply. To do so, the iteration design was applied to desi-
gning the teaching aid called Pixel Button. During the iteration design process Pixel
Button has been adapted so that in the future it can be applied more practical and
useful to learn to program for suitable targets.

Keywords: Programming aided design, Computational thinking, Teaching aids, Programming
language, Information technology education

INTRODUCTION

With the continuous progress and evolution of science and technology, ele-
ments such as computer science and algorithmic thinking have begun to
appear in work types and lifestyles. More and more products becoming intel-
ligent, connected devices (Porter, 2015). The OECD has estimated that 14%
of jobs are at a high risk of automation (Georgieff, 2021). In the future,
most jobs will be replaced by intelligent machines. In that occupational con-
text, using computers, information technologies, and technologies in other
areas, become an important task in the higher education system. Promoting
the development of algorithmic thinking has become an urgent goal for ever-
yone (Byrka, 2021). In 2016 the president of the United States initiative calls
for “Computer Science For All”, all children from kindergarten through high
school need to learn computer science and be equipped with computational
thinking skills, making them job-ready on day one (Grover, 2017). In addi-
tion, the proportion of other countries that implement programming courses
in compulsory education is also quite high.

© 2022. Published by AHFE Open Access. All rights reserved. 48

https://doi.org/10.54941/ahfe1002383

Design Interactive Teaching Tools of Programming Language 49

However, there are many abstract concepts in computer science education.
It is difficult for teachers to convey knowledge through the description, and
it is difficult for students to fully understand the operation process through
words. Therefore, computer science belongs to a relatively high-level and
challenging knowledge level for students. This can also lead to students being
easily distracted in class and lacking motivation to learn. Based on the above
dilemma, this study explains to design a set of programming aid to assist
students in constructing computational thinking through interactive devices
with light output and button input.

BACKGROUND RESEARCH

Basic Programming as Learning Content

In the process of program compilation, it is necessary not only to understand
the syntax of a specific language but also to think systematically and logically.
Algorithmic thinking is an important part of Computational thinking. If one
wants to write precise instructions, one needs to understand the conceptual
underpinnings of how algorithms work. And also need to understand their
different building blocks.

If a programmer is not aware of concepts such as loops, data structures, or
objects, it would be difficult for the programmer to plan a suitable program
structure (Koorsse, 2015). Programming knowledge involves three aspects,
first is programming concepts and principles, second is knowledge of com-
puters, third is programming language knowledge or syntax. The above three
are indispensable, and they are all important basic concepts in computer sci-
ence. The teaching aids of this study focus on the learning of programming
concepts and principles.

Learning Programming at High School

Computer programming skills are one of the core competencies of the engi-
neering discipline. To fully understand and use it flexibly, students need a lot
of practice. But when they experience repetitive failure in practice, it is easy to
lose enthusiasm and interest in learning computer programming. Therefore,
the current teaching model of computer programming needs to be improved.
Additionally, need special attention to the factors affecting students’ learning
motivation. Law et al. sorted out among the six factors that motivate lear-
ning, “individual attitude and expectation”, “clear direction”, and “reward
and recognition” have the greatest motivating effect on learning (Law, 2010).
Using more engaging modes of user interaction is also an effective way to
arouse students’ learning motivation (Sorva, 2013).

Although computer science courses have become popular in senior high
school education, they are still less than the proportion of time occupied
by main subjects. In weekly lectures, teachers do not have enough time to
interact with all the students in a class of a lot of students. This is a big
problem for both teachers and students (Wang, 2008).

At the beginning of the design process, we visited the Hou-Zong Senior
High School (see Figure 1), to understand student learning patterns in the

50 Huang and Chen

rol

Figure 1: The senior high school we visited in Taichung, Taiwan.

Table 1. Dilemmas faced by students in learning computational thinking.

Dilemmas faced by students in learning computational thinking

1. Programming concepts are too abstract to be understood through text
descriptions or even diagrams.— teaching material problem

2. Each high school class is only 50 minutes long, and if it is equipped with
complex teaching aids, it will take a lot of preparation time.— teaching
material problem

3. Class sizes are often large, making it difficult to teach individually on an
independent basis.— school management problem

4. The theoretical courses are too dull, resulting in the low motivation of
students to learn.— students’ internal problem

5. Programming is mostly a dynamic process, but static teaching materials are
often used for teaching activities.— teaching material problem

6. Students lack the goals they strive to achieve, and it is difficult to gain a
sense of achievement in the process of learning.— students’ internal problem

7. When using Arduino kits to aid teaching, the variety of parts can cause
circuit connection problems and easily affect the focus of learning.—
teaching material problem

8. In addition to learning computational thinking, computer science also needs
to have the ability to practically solve problems, which is relatively lacking
in high school courses.— curriculum’s problem

classroom. And integrate common problems based on student feedback and
teacher comments as our design basis (see Table 1).

As seen from table 1, some problems can be categorized into. The school
management problem, curriculum problem, student’s internal problem, and
teaching material problem. Among them, the most common part of learning
programming is the teaching material problem. Such as lack of supporting
media to study programming thus makes students difficult to understand the
concept by text and diagram, the complexity of teaching aid, static teaching
material, etc. In this study, we will focus on the improvement of teaching
material. Solve the learning problems of high school students by designing
teaching aids.

RELATED WORKS

There are many teaching aids to help students learn programs. Those are
offering interesting learning methods to improve students’ motivation and

Design Interactive Teaching Tools of Programming Language 51

learning content level
4

Al artificial intelligence
interactive game machine

applicability

v

' i MINDSTORMS EV3

RoboMaster S1

iPOE P5

Figure 2: Cross-quadrant distribution map of existing products.

effectively learn. Widely used in teaching field programming aids including
development boards type (E.g. Arduino UNO, Micro: bit), and robot-type
teaching aids (E.g. EV3 of the LEGO Mindstorms series), both of them
are very popular in education. We analyzed the products from the learning
content and the level of applicability.

Figure 3, analyzed the products by using the learning content level and
applicability level. Learning content levels can be divided based on the user’s
ability and content’s complexity. The lowest level is for beginners, such as
kids. A common practice is to train the flow of the program through the
functional image block. And the highest level applies to seniors such as high
school students. Not only do they need to understand a variety of program
structures, but they also need to be able to figure out how to solve problems
after thinking independently and start coding from scratch. Applicability level
represents the diversity that the teaching aid can demonstrate. Due to har-
dware limitations, some teaching aids, although very interesting, can only
express a simple program structure, so the content that students can learn
is relatively limited. From the quadrant (see Figure 2), no product provides
advanced learning content for high school students while at the same time
can also be applied to multiple program structure cases. So, this research
develops the Pixel Button to fill this gap.

DESIGN CONSIDERATIONS AND DEVELOPMENT
Design
The following are the design phases of this study:

52 Huang and Chen

Pixel Button=2

P
i
v
>
45"
Figure 3: The pixel button.
1. Define problem and solution.
Problem Solution
Abstract concepts are hard to under- ~ Visualize abstract concepts.
stand.
Teaching aids are too complex, cau- Simplified hardware operation.

sing extra time wasted.

Hard to express the dynamic process ~ Tangible user interface.

of the program.

Too many components cause circuit Simplified electronic components.
problems.

Develop teaching content and demonstration examples.
Design instructional media and circuit sketches.
Material selection and testing.

Evaluation and development.— Pixel button

bk wbd

Content Design at the Pixel Button

Through tact switch as input and ws2812 LED as output, the components are
distributed in a matrix arrangement, allowing the panel to produce variable
effects. Visually express complex abstract concepts and build computatio-
nal thinking. In the programming course, students can input the examples of
the corresponding teaching material units provided by us into the teaching
aids and observe the changes of lighting sequence, color, and light, et (see
Figure 4). In addition to helping users understand the purpose of each line
of code, students can also modify the code themself to achieve the desired
effect as an exercise. Applicable program structures include array structure,
sequence structure, repetition structure, selection structure, modularization
structure, recursive structure, and even sorting and searching algorithms,
which can be demonstrated by this teaching aid (see Table 2).

After learning the Program structure, they can also try to create interactive
game projects by themselves, Including Othello, ping pong, MineSweeper,

Design Interactive Teaching Tools of Programming Language 53

000 000
Figure 4: Presentation of the interactive interface.
Table 2. Programming implementation.
Program structure Specific example
One dimensional array Control a single LED and light a specific color.
Two-dimensional arrays Control the LEDs on the matrix to light a specific
pattern.
sequence structure Control the first LED to the last in the sequence.
repetition structure (for) Control the first LED to the last one by one and repeat
the loop.
Read the button state repeatedly.
selection structure (if-else) Control the interface display effects through buttons.
modularization structure Modularize various functions, such as clear function,
canvas function, and mirror function.
recursive structure Increment the number of bright LEDs recursively.
Bubble Sort Read the number of each line of input and sort the
number of input LEDs through an algorithm.
binary search Read the number of inputs for each line and find the

median value through an algorithm.

memory games, etc. Helps students improve their problem-solving skills in
the process.

Circuit Configuration

We use Arduino UNO, WS2812 RGB led, tact switch, CD4051B IC, and
other electronic components to form an array display panel to make a simple
prototype. The WS2812 RGB led strip only needs one pin to control the light
of each position, but the tact switch of the array needs a total of 16 pins in
the row and column direction to read the status of 64 buttons. Therefore, in
the face of too many pins, we use the CD4051B IC to convert every 8 pins
into 3 pins for wiring (see Figure 5).

DISCUSSION

Solve Mechanism Problems

In the beginning, we did a quick circuit prototype (see Figure 6a). Functi-
onally, it meets the needs of our users, but in addition to functionality, the
hardware also needs to have good interface feedback and tactility to keep
users engaged. To allow users to observe the effect of input and output at the
same time, we have also tried a variety of button mechanisms and interface
presentations. As seen in Figure 6, firstly, the initial button mechanism we

54 Huang and Chen

! : b ., - =

Figure 7: The user uses this teaching aid to make a game of Othello.

use PLA as material and make it through 3D printing (see Figure 6b). But
due to the poor lighting effect of the button, we changed it to a combination
of MDF and acrylic. However, the method is very complex but works well
(see Figure 6¢). Finally, we use silicone casting, with a hardware structure and
tact switch (see Figure 6d), which not only simplifies the process but also has
good color performance (see Figure 6e).

Future Feasibility

After user testing, there is input to consider for future development:

1. The weight problem. The supply power takes Pixel Button heavier than
it should be. This is because the pixel button needs a lot of power con-
sumption to support the LED light, which can be reduced in future
designs.

2. Wiring circuit. This will make Pixel Button practical useful and reduce
the preparation time in class.

3. Connected among the devices to increase communication and expand the
scope of hardware operation.

Design Interactive Teaching Tools of Programming Language 55

CONCLUSION

In this paper, Pixel Button is designed to accommodate the advanced level
learner, in this case, the high school student. This teaching aid offers pra-
ctical usage that can reduce the problem caused by inappropriate teaching
materials. Through the tangible user interface, and the course design of vari-
ous interactive projects. Makes students able to learn the program structure
in algorithmic thinking courses in a fun and specific way (see Figure 7). In
the next stage, we will extensively test and promote this set of teaching aids,
hoping that this teaching aid can contribute to the field of programming
education.

REFERENCES

Byrka, M. E,, Sushchenko, A. V., Svatiev, A. V., Mazin, V. M., & Veritov, O. L. (2021).
A New Dimension of Learning in Higher Education: Algorithmic Thinking.
Propésitos y Representaciones, 9(SPE2), 990.

Georgieff, A., & Milanez, A. (2021). What happened to jobs at high risk of
automation?.

Grover, S. (2017). Assessing algorithmic and computational thinking in K-12: Les-
sons from a middle school classroom. In Emerging research, practice, and policy
on computational thinking (pp. 269-288). Springer, Cham.

Koorsse, M., Cilliers, C., & Calitz, A. (2015). Programming assistance tools to
support the learning of IT programming in South African secondary schools.
Computers & Education, 82, 162-178.

Law, K. M., Lee, V. C., & Yu, Y. T. (2010). Learning motivation in e-learning
facilitated computer programming courses. Computers & Education, 55(1),
218-228.

Porter, M. E., & Heppelmann, J. E. (2015). How smart, connected products are
transforming companies. Harvard business review, 93(10), 96-114.

Sorva, J., Karavirta, V., & Malmi, L. (2013). A review of generic program visuali-
zation systems for introductory programming education. ACM Transactions on
Computing Education (TOCE), 13(4), 1-64.

Verdu, E., Regueras, L. M., Verdu, M. J., Leal, J. P, de Castro, J. P., & Queirds,
R. (2012). A distributed system for learning programming on-line. Computers &
Education, 58(1), 1-10.

Wang, F. L., & Wong, T. L. (2008, August). Designing programming exercises with
computer assisted instruction. In International Conference on Hybrid Learning
and Education (pp. 283-293). Springer, Berlin, Heidelberg.

	Design Interactive Teaching Tools of Programming Language for Senior High School Students
	INTRODUCTION
	BACKGROUND RESEARCH
	Basic Programming as Learning Content
	Learning Programming at High School

	RELATED WORKS
	DESIGN CONSIDERATIONS AND DEVELOPMENT
	Design
	Content Design at the Pixel Button
	Circuit Configuration

	DISCUSSION
	Solve Mechanism Problems
	Future Feasibility

	CONCLUSION

