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ABSTRACT

Continuous monitoring of the passengers’ comfort level could improve the user
experience in automated driving. Mathematical models which use different physi-
ological measures such as heart rate, pupil diameter, frequency of eye blinks and
head movements are a promising tool for the prediction of potentially uncomfortable
automated driving situations. In this paper, a classification model based on stocha-
stic approximation is trained and tested on data obtained during a driving simulator
study. The focus lies mainly on the correct selection of training and test data sets; in
particular if models should be built for an individual person or different discomfort
situations. The latter can be concluded based on common performance metrics which
also provides a basis for further research.
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INTRODUCTION

One of the most important goals in the field of autonomous driving develo-
pment is to make the experience for the passenger as pleasant and comforta-
ble as possible (ERTRAC, 2019). In addition to traditional influence factors
on passenger comfort, new aspects arise due to the transfer of control from
the human to the vehicle. Some of these are apparent safety, motion sickness,
user preferences regarding driving style and information needs (Elbanhawi et.
al., 2015). Ideally, the vehicle and the passenger should form a team, whereby
the vehicle should be able to detect and predict situations of arising discom-
fort in real time and take measures accordingly. This requires not only the
continuous monitoring of the passengers state but also the implementation
of adequate mathematical models to process this sensor data (Dommel et al.,
2021).

To investigate how this teaming of human and automated agents can
be shaped in the most effective way is a key topic of the Collaborative
Research Center “Hybrid Societies (https://hybrid-societies.org/). In this fra-
mework, driving simulator data from the previous project “KomfoPilot”
(https://bit.ly/komfopilot) is re-analyzed. While pupil diameter, heart rate,
interblink intervals, skin conductance and head movement have already been
identified as potential single indicators of discomfort (Beggiato et al., 2018),
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it is now necessary to integrate these and other findings of the project into a
functional multivariate model.

This paper investigates how such a model can be shaped to offer high pre-
diction accuracy and viable practical implementation. The first important
question – which arises from the heterogeneity of the participants – is whe-
ther to work with training data on an individual or aggregated level. We
compare both possibilities by applying techniques from the field of stocha-
stic approximation for clustering of the chosen training set and subsequent
classification of the test data.

METHODS

Experiment. As part of the project “KomfoPilot”, 40 individuals between
the age of 25 to 84 (25 male, 15 female) participated in a driving simulator
study consisting of two three-minute-long highly automated drives. During
each session, the participants were objected to three potentially dangerous
and discomfort-inducing near collision situations with a truck driving ahead,
where the truck drove at a constant speed of 80 km/h while the automa-
ted vehicle approached it with 100 km/h. Automated braking then started
at a rough distance of 9 m, reaching a minimum of 4.2 m and a minimum
time-to-collision of 1.1 s and there was no possibility of human intervention.
Participants were able to continuously report the extent of their perceived
discomfort during the whole driving via an integrated handset control lever
(further details on method, sensors and measures can be found in Beggiato
et al., 2020).

Sensors and Physiological Measures. We first describe the variables inclu-
ded in our models and the respective devices used to measure them. Pupil
diameter and eye blinks were assessed using the SMI Eye Tracking Glasses 2.
This device was not applied in the second driving session to test camera-based
facial expressions recognition (Beggiato, Rauh, & Krems, 2020), and could
not be worn by participants already wearing eyeglasses, which reduced the
sample to 20 trips of 20 participants. A moving average over ± 300 ms was
calculated for pupil diameter to adjust for fluctuations, especially close to eye
blinks. To obtain a continuous blink rate, a new variable called “interblink
interval time” was introduced, defined as the time in seconds passed since the
last blink. Heart rate was measured continuously by the smart band Micro-
soft Band 2. The difference of the head position on the z-axis to the position
at the start of the drive in mm was measured by an OptiTrack motion tra-
cking system. Finally, the gradual handset control signal was transformed
into a binary variable consisting of a discomfort (handset control > 0) and a
comfort (handset control = 0) class.

Data preparation. The analyzed data sets always consisted of the five vari-
ables pupil diameter, heart rate, interblink interval time, difference of head
position and handset control. The first four were used as the feature variables
and are standardized for each participant individually, i.e.

z =
x− x
s
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Table 1. Contingency table for binary classification.

Prediction

Total Population (P+N) Positive (PP) Negative (PN)
Truth Positive (P) True positive (TP) False negative (FN)

Negative (N) False positive (FP) True negative (TN)

where x is the mean and s is the estimated standard deviation of the corre-
sponding feature. This transformation is necessary due to different magnitude
of the variables and individual differences between the participants, e.g. heart
rate at rest.

Quality measures. In order to assess the performance of our model, we
calculated and compared different metrics on the test datasets. In the con-
text of binary classification, the four possible outcomes can be presented
in a contingency table or confusion matrix (Fawcett, 2006), as described in
Table 1.

In our specific context, a discomfort situation was associated with “posi-
tive” and a comfort situation with “negative”, respectively. Many different
metrics can be derived from this contingency table, but we focused on the
following three. First, the accuracy

Accuracy =
TP + TN
P + N

is the ratio of correct predictions to total population. If datasets are imba-
lanced, as it occurred frequently in the case of our test sets, this metric is
potentially misleading. Hence, it is also necessary to consider the precision

Precision =
TP

TP + FP
,

and the recall

Recall =
TP

TP + FN
.

A low precision is synonymous with a large amount of false positives, mea-
ning that the classifier is overestimating. Similarly, a low recall or sensitivity
implies that a large amount of positives are missed by the classifier.

MODELS

Clustering-classification-model. We now briefly discuss our modeling appro-
ach. Contrary to other popular methods, such as, e.g., Support Vector
Machines or Logistic Regression (Dommel et al., 2021), we took a two-
step-approach. First, we used an algorithm from the field of stochastic
approximation (Pflug & Pichler, 2014) to cluster the training data. In parti-
cular, we obtained a set of supporting points or cluster representatives and
each data point was assigned to the cluster to whose representative it is the
closest. The resulting clusters were then labeled as discomfort or comfort,
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based on the majority of the points in the respective cluster. To account for
potential imbalances, additional discomfort points were randomly sampled
from the ones present in the training set and added to it until reaching an
equal amount of comfort and discomfort points. To make predictions on the
test set, we simply calculated the distances to the cluster representatives and
assigned the label of the closest cluster.

Training and test data. We chose three different approaches of selecting
training and test data and investigated the implications for the quality of the
resulting model.

The first approach – referred to as individual approach – was to build
models based on the individual data set of each participant. For this purpose,
we divided the corresponding time series into four equally sized parts, where
parts two to four contained a discomfort situation each and the first part was
omitted due to only containing an initial test of the handset control unit by
each participant. The model was then trained on set two and tested on set
three, as well as trained on the combination of two and three and tested on
set four.

The second approach was to predict the data set of one participant using
a model that was trained on the data of the remaining participants. We will
refer to this as the aggregated approach.

Finally, we tested on the data of a single discomfort situation (parts two
to four mentioned above) of one participant using a model that was trai-
ned on data consisting of the same discomfort situation of the remaining
participants. This will be referred to as the situational approach from now on.

RESULTS

Individual Approach. As mentioned above, we have two train-test-splits
for each participant corresponding to two models. Table 2 shows the per-
formance metrics on the different training and test sets averaged over all
participants. Although the metrics on the training sets are very good in both
cases, the models do not generalize well and perform rather poorly on the test
sets. While additional training data yields an increase in recall on average,
overall accuracy and precision decrease.

Aggregated Approach. Table 3 shows the averaged performance metrics
for the aggregated approach, where testing was performed on the data of the
complete drive of a particular participant using a model trained on the data of
the remaining participants. Overall accuracy and recall are moderately good
with values of 67.2 % and 64.3 % on average. However, a mean precision
of 27.0 % implies a large number of false positives or “false alarms”.

Situational Approach. Similarly to the aggregated approach, we trained on
the data of all but one participant, but separately for each of the three discom-
fort situations. Table 4 displays the corresponding performance metrics. We
observed a moderately good overall accuracy for all situations and the high-
est recall out of all three approaches. However, average precision again is
undesirably low.

Comparison of Approaches. The individual approach was chosen based
on the assumption that participants have different perceptions of discomfort,
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Table 2. Performance metrics for individual approach, averaged over all participants.

Training Set 2 Testing Set 3 Training Set 2 + 3 Testing Set 4

Accuracy 87.5 % 75.1 % 81.8 % 61.0 %
Precision 87.9 % 43.2 % 79.9 % 29.6 %
Recall 87.9 % 28.0 % 88.1 % 53.8 %

Table 3. Performance metrics for aggre-
gated approach, averaged over
all participants.

Training Testing

Accuracy 65.8 % 67.2 %
Precision 66.8 % 27.0 %
Recall 63.2 % 64.3 %

Table 4. Performance metrics for situational approach, averaged over all participants

Situation 1 Situation 2 Situation 3

Training Testing Training Testing Training Testing

Accuracy 71.5 % 65.1 % 71.3 % 65.0 % 70.2 % 60.4 %
Precision 70.5 % 31.8 % 70.3 % 35.0 % 67.9 % 27.2 %
Recall 72.1 % 75.8 % 74.6 % 73.2 % 77.0 % 77.8 %

making it beneficial to use separate prediction models for each of them. As
mentioned above, the models have a good fit on the training data, but do not
generalize well on the respective test sets. This is quite counter intuitive, given
the fact that each drive consists of three identical near collision situations and
raises the question whether time since the start of the drive and/or previous
experiences also influence perceived discomfort. Ultimately, the individual
models failed to outperform the ones of the other approaches. It should be
noted however, that the amount of data available for each participant was
comparatively low and it might be worth to carry out additional experiments
to investigate this approach further.

The models of the situational and aggregated approach both used data
of all but one particular participant each, with the difference that the three
discomfort situations were modeled separately for the situational approach.
While we can observe a similar accuracy on average, the models of the
aggregated approach tend to have a lower accuracy as well as recall, which
strengthens the hypothesis that these situations were perceived differently.

CONCLUSION

This paper investigated different approaches on modeling and detecting
discomfort based on data from the driving simulator study “KomfoPilot”.
We considered different choices of training and test data, in particular focu-
sing on each individual participant and the different discomfort situations.
We used a clustering-and-classification model where the inputs were vectors
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consisting of z-scores of heart rate, difference of head position on the z-axis
since the start of the drive, pupil diameter and interblink interval time. We
identified the above mentioned situational approach as the most promising to
predict discomfort and conclude that it is more advantageous to train a model
based on specific situations the passengers are exposed to in traffic. Surpri-
singly, this is more efficient than training the model for individual persons.
There is still room for improvement in the performance, which might be ach-
ieved by including additional input features such as a time component, facial
expressions (Beggiato, Rauh, & Krems, 2020) or body movements (Beggiato,
Hartwich, & Krems, 2018).

The subject of further research may be the identification of adequate
additional features, the performance of the presented individual approach
for larger data sets of a single participant and the application of other
mathematical models.
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