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ABSTRACT

The aim of this paper is to examine the effect of explicit (i.e., ransomware) and silent
(i.e., no turn signals) failures on drivers’ reported levels of trust and perception of risk.
In a driving simulator study, 38 participants rode in a conditionally automated vehicle
in built-up areas and motorways. They all experienced both failures. Not only levels of
trust decreased after experiencing the failures, especially after the explicit one, but also
some of the scores were low. This could mean cyber-attacks lead to distrust in auto-
mated driving, rather than merely decreasing levels of trust. Participants also seemed
to differentiate connected driving from automated driving in terms of perception of
risk. These results are discussed in the context of cyber intrusions as well as long- and
short-term trust.
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INTRODUCTION
Background

Contemporary computerised automated systems, such as automated driving,
posit challenges in terms of cyber security and user trust (Seetharaman et al.,
2021). Indeed, confidence in how secure and reliable these systems are has
dropped because of software vulnerabilities and connectivity (Schoettle and
Sivak, 2014). Current threats against modern vehicular platforms stem from
three main trends. The first one is the increased complexity of vehicle softw-
are (e.g., raise in lines of code and electronic control units; Antinyan, 2020).
The second trend is the increased connectivity resulting in vehicles being more
attractive and accessible to offenders (e.g., wireless networks and communi-
cation interfaces connected to the Internet of Things environment; Sheehan
et al., 2019). The third trend is the increased content value with respect to
personal and sensitive information (e.g., locations visited, journeys, route; see
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Deng et al., 2020). Software, connectivity and data storing systems built over
digital platform could be exposed to security vulnerabilities and failure (ISO-
/SAE DIS 21434, 2020), which means that user trust in automotive systems
remains an open question.

State of the Art

Past work examined the best practices on how to display in-vehicle infor-
mation in order to optimise drivers’ trust in the system (Wintersberger et al,
2020). One example is that displaying the status and actions of the system
enhances transparency and supports appropriate levels of trust in the system
(Carsten and Martens, 2019). Nevertheless, little is known on the consequ-
ences of failing to communicate reliable information on the vehicle status
and operations on trust. This is prominent with respect to silent failures,
whereby the system fails to inform the driver of its limit and inability to
operate reliably (Louw et al., 2019). This lack of evidence is worrying from
the safety perspective since automation failures can influence drivers’ level
of trust in automated driving systems (Payre et al., 2016; 2017; 2021). As a
result, disuse (e.g. no use), misuse (e.g. unsafe operation as reported by the
National Transportation Safety Board Tesla crash report, 2017) or abuse (e.g.
take advantage of the limits) of such system may arise (Parasuraman et al.,
1997). Recent evidence suggests that the subjective level of trust should be
aligned with the capabilities of the automation to mitigate the undesirable
effect of overtrust (i.e. using the automated system despite its unreliability)
and distrust (i.e. not using the system although it is reliable; Khastgir et al.,
2018). The name of this process is trust calibration (Lee and See, 2004).

A critical factor affecting the calibration of trust is perceived risk (Hoff &
Bashir, 2015; Lee & See, 2004), defined as “the likelihood and consequences
of error” (Riley, 1996). Perceived risk correlates negatively with trust (Riley,
1996) and two sub-types have been recently identified: relational and situ-
ational perceived risk (Stuck et al., 2021). Perceived relational risk refers to
the driver’s attitude towards the automated vehicle modulated by experience.
Perceived situational risk refers to the drivers’ attitude towards the driving
task or context, modulated by the probability of potential negative outcomes.
According to Stuck et al., the trustworthiness of the conditionally automated
vehicle defines relational risk, whilst the potential negatives outcomes from
a task define situational risk. This means that each sub-type of perceived risk
has unique relationships with trust (Li et al., 2019).

Despite numerous studies have shown what and how to present informa-
tion to support trust calibration, there has been little discussion to com-
prehend whether, how and when screen failures influence drivers’ trust in
automated systems and perceived risk. Addressing this research gap, we will
investigate the effect of the type of in-vehicle screen failure and its timing on
individuals’ trust and perceived risk.

The objective of this study is to understand the extent to which software
malfunctions and cyber intrusions of digital displays occurring in conditio-
nally automated vehicles (SAE level 3) impact drivers’ trust — and by extension
road safety if they decide to resume manual control from the vehicle. We have
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Figure 1: (left) Driver's view of the dashboard and HMI used for activating the auto-
mation (right) Driver in-the-loop simulator and its 4.75 meter, 270 degree curved
screen.

generated a set of realistic use-cases where screen safety failures, caused by
either software failure or cyber-attack (i.e. ransomware) may result in not
displaying information relevant to the operation and status of the automa-
ted driving system. Furthermore, a cyber-attack may lead to a security breach
warning or ransomware popping up the screen. These use-cases are integrated
in a bespoke driver in-the-loop simulator allowing the collection of attitudi-
nal data. It was expected that: Hypothesis 1 (H1) a): Trust decreases after the
software fails to display relevant information (i.e., silent failure) and b) after
the cyber-attack (i.e., explicit failure); H2: The explicit failure has a greater
effect on trust than the silent failure; H3: Perceived risk would be higher for
the explicit failure than the silent.

Method, Material and Experimental Procedure

The sample consisted of 38 participants, including 22 males and 16 fema-
les. One female participant dropped out from study because of simulator
sickness. They were 36.2 year-old on average (SD = 12.5) with 0 to 43 years
of driving experience either in the UK or in the European Union (M = 15.7,
SD = 13.1). They drove on average 7734 miles a year (min = 0, max = 20000,
SD = 5891). They were free to withdraw from the study at any time.

The experiment was carried out in a driver in-the-loop simulator with a
full-body vehicle and three degrees of freedom. A 7” touchscreen display allo-
wed drivers to activate the automated driving mode, see the status of vehicle
(i.e., manual vs. automated mode) and create a user profile including name,
surname, email and password (Figure 1). These details would later be used
to replicate the ransomware attack, following the method described in (Wolf
and Lambert, 2017).

Participants were semi-randomly assigned to each experimental group:
early vs. late failure i.e. they experienced the screen malfunction of the SAE
level 3 car either 2 min or 10 min after the system was engaged. The scenario
consisted of 15 miles of suburban roads and motorway. After a familiarisa-
tion trial where participants drove the car and engaged the automation, they
completed three counter-balanced 12 min trials, namely no failure, silent fai-
lure and explicit failure. The within-subject factor was the type of failure with
two conditions: silent (i.e., turn signal failed to activate when automated car
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Table 1. Paired t-test values for the trust in automation scale measured before and after
the experiment. Asterisks indicate significant effects.

Dependent variable t df pvalue M (SD)before M (SD) after
Reliability/Competence 22 36 .035% 3.95 (.47) 3.69 (.69)
Understanding/Predictability 2.6 36 .014* 4.35 (.56) 4.01 (.81)
Familiarity -1 36 .334 2.16 (1.06) 2.30(1.23)
Intention of developers 2.1 36 .040% 4.30 (.70) 4.05 (.81)
Propensity to trust 1.2 36 .255 3.53 (.53) 3.41 (.69)
Trust in Automation 1 36 .345 3.76 (.73) 3.55 (1.12)

performed an overtaking manoeuvre) or explicit (i.e., ransomware). Partici-
pants were prompted to engage in a word search task upon self-activation of
the automated driving system. They were allowed to resume manual control
and reengage the system at any time. After each trial, participants filled in
a survey including questions on trust, perception of risk and demographics.
The study lasted approximately 2 hours and participants were given a £20
voucher as a compensation for their time.

Measures

Participants were administered the trust in automation scale (TAS) (Korber,
2018) before and after the study, to assess dispositional trust. After each trial,
situational trust was measured using the Situational Trust Scale — Automated
Driving (STS-AD, Holthausen, 2020). They also indicated their opinion on a
bespoke 5-point Likert scale (ranging from 1: strongly disagree to 5: strongly
agree), for the following two items: [ would recommend someone else to trust
this conditionally automated vehicle (Recommend) and I think it is necessary
to trust vulnerable conditionally automated vebicles (Trust vulnerable). The
reason underlying the use of bespoke items was to assess to what extent indi-
viduals would recommend others to trust the system, and the effect of the
vulnerability of the system on self-reported trust.

Perception of risk (POR) was assessed using an adapted version of the
three-item scale for perceived relational risk (1: strongly disagree to 5: stron-
gly agree; Rajaonah et al., 2008; Lietal., 2019): The conditionally automated
vehicle is risky (POR1); Using the conditionally automated vebicle increases
the risk of having a road accident (POR2); and Using the conditionally auto-
mated vehicle forces me to take a lot of risks (POR3). For this measure, two
participants’ scores were not analysed due to data loss when extracting the
data.

Results

Concerning the TAS, five paired-samples T-tests indicated a significant effect
of the conditions on the level of trust for three dimensions (Table 1 and
Figure 2).

The experimental conditions did not significantly affect STS-AD.

With respect to the two bespoke trust items, two repeated measures
ANOVA showed that there was a significant effect of the condition on the
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Figure 2: Mean and SD values for the factors from the TAS scale before and after the
trial.

Table 2. Perception of risk scores after each experimental condition.

Dependent variable M control (SD) M silent (SD) M explicit (SD)
POR 1 (risky) 2.92 (1.12) 2.8 (.94) 2.89 (1.13)
POR 2 (road accidents) 2.86 (1.21) 2.6 (1.01) 2.76 (1.14)
POR 3 (take risks) 2.86 (1.29) 2.51 (1.01) 2.81 (1.29)

Recommend (F(2, 33) = 4.96, p = .013, nzp = .23) and Trust vulnerable
items (F(2,33) = 6.3, p = .005, 7%, = .28). Mauchly’s Test of Sphericity indi-
cated that the assumption of sphericity for both comparisons had not been
violated, y2(2) = 4.34, p = .114; x%(2) = 1.00, p = .61. A post hoc pairw-
ise comparison using the Bonferroni correction showed that the Recommend
and Trust vulnerable scores were lower (p < .05) after the explicit failure
(Miec = 2.89, SDyec = 1.2; My = 2.77, SDyy = 1.3) compared to both
the control (Myec = 3.49, SDyec = .925 M, = 3.26, SD,,; = .98) and silent
failure (Myec = 3.54, SDyec = .98; M, = 3.4, SD,,; = 1.1) conditions.

Perception of risk scores for did not significantly vary after experiencing
the failures and were moderate (Table 2). However, an interaction effect was
found between the order of the explicit failure condition and the perception of
risk during the explicit failure condition (Pillai’s Trace = .29, F(4, 68) = 2.91,
p=0.03, n?, = 0.15). A further exploration of pairwise comparisons showed
the ratings for Using the conditionally automated vebicle forces me to take
a lot of risks (M = 3.21, SD = 1.25, p = 0.02) were significantly greater
than Using the conditionally automated vebicle increases the risk of having
a road accident (M = 2.43, SD = 1.09, p = 0.02) when explicit failure was
the second condition.

Discussion

This driving simulator research explored the effects of software malfunctions
and ransomware on trust during conditionally automated driving. The fin-
dings evidenced that silent and explicit failures occurring in a conditionally
automated vehicle had a detrimental effect on the following factors of the
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TAS: Reliability/Competence, Understanding/Predictability, and Intention of
Developers. This was congruent with previous work that showed a decrease
in dispositional trust in automation due to a lack of Reliability/Competence
(Fu et al., 2020; Kraus et al., 2020; Liu et al., 2021), Understanding/Predi-
ctability and negatively perceived Intention of Developers (Alonso and De
La Puente, 2018; Kraft et al., 2020; Kraus et al., 2020). Hla and b were
supported.

No significant variations in situational trust (STS-AD) were observed,
which was not congruent with results from previous research. However,
results from the two bespoke items indicated that trust scores after the explicit
failure were significantly lower than the silent failure and control conditi-
ons. It is important to stress that these trust scores were in essence low (i.e.,
lower than the median point of the scale) meaning that drivers distrusted
the system. This finding supported H2 and was aligned with a number of
studies identifying cyber threats as a critical factor affecting negatively trust
in automated vehicles (Khan et al., 2020; Seetharaman et al., 2021). Furth-
ermore, suspicion stemming from uncertainty, perception of malintent, and
cognitive effort in trying to generate an explanation for the cyber-attack, may
explain the lower level of trust after the ransomware compared to the other
two conditions (Bobko et al., 2014). This claim seems to be supported by
the interaction between the perception of risk after the explicit failure and
the order of the explicit failure condition. When the cyber-attack occurred
in second position, participants already had some experience to know that
automated driving was reliable, but not enough to ignore the fact that they
were hacked. Such uncertainty could explain why participants reported that
using the AD resulted in taking more risks in general than taking more risks
to have a road accident. It could mean that they made a distinction between
being hacked and the risk of having a road accident. In other words, dri-
vers seemed to differentiate an automated driving system from a connected
driving system. AD may increase the risk of being hacked (i.e., connected
vehicle) but because the vehicle was handling the driving task safely despite
the cyber-attack (i.e., automated driving), drivers could focus on sorting out
the cyber-threat. According to this interaction, having to deal with the cyber-
threat when driving manually would have been more risky than in automated
mode. Hence, suffering a cyber-attack while AD is engaged could be safer
than while driving manually. Other interpretations of these findings are also
possible. H3 was partially supported.

Overall, these results suggested that system malfunctions in conditionally
automated driving had a negative effect on both dispositional, longer-term
trust and learned, short-term trust. The ransomware explicit failure had a
stronger negative effect on trust than the silent failure. A possible explanation
for this is that the ransomware was conspicuous whereas the non-activation
of the turn signals was not. Therefore, the ransomware was possibly percei-
ved as riskier compared to the silent failure. The ransomware might have also
stressed how vulnerable the automated driving system was. These data should
be interpreted with caution because they are declarative only. Furthermore,
the ransomware could have been perceived as a spam rather than a genuine
cyber-attack, which may have tempered the effect of the explicit failure on
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trust and perception of risk. Further research should investigate the effect of
both explicit and silent failures on driving behaviour, performance and safety.

CONCLUSION

The novelty of this study is that two types of connected and automated
driving failures and their effect on subjective trust have been examined: ran-
somware (i.e. explicit) vs. non-activation of the turn signals (i.e. silent). What
is also innovative is that the explicit failure originates from an external source
being outside the vehicle-driver system. Results showed that drivers trusted
less the system after experiencing a ransomware cyber-attack than after a
silent failure or no failure at all. Findings of the present study are important
for designers and decision makers because they shed light on how exter-
nal malevolent actors can impair trust in automated vehicles, provided that
drivers should trust this vulnerable technology.
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