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ABSTRACT

Sleeping or drowsiness while driving contributes to human error, being one of the
most relevant causes of traffic accidents in the world. The main hypothesis in the
present work is that the physical response in drivers can be measured via biophy-
sical parameters, such as changes in heart variability (HRV), and that measurement
can lead to drowsiness detection. Following this principle, the main objective of this
paper is to present the development a non-invasive system integrated in the vehi-
cle steering wheel to detect the presence of somnolence while driving and validate it
via KSS.
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INTRODUCTION

Sleeping or drowsiness while driving contributes to human error, being one
of the most relevant causes of traffic collisions and accidents in the world
(Chan, 2016). Although it is foreseen that completely automated vehicles
can reduce significantly these numbers (Rowley ez al. 2018), there will be a
sequential incorporation of automated vehicles. In these vehicles, the driver’s
role changes from an active operator to a passive observer. The consequence
might be a decreased attentional focus towards the driving task and changes
in driver’s arousal level (Shomig et al. 2018).

Monitoring biomedical signal (De Rosario et al. 2010) can be found in rela-
ted literature, as especially useful during the drowsiness cycle. Some authors
use the electroencephalography (EEG) (Subasi, 2005), but it is very invasive
as requires wires attached to the head of the subject. Other efficient systems
are those based on the use of electrocardiographic signal (ECG) (Tasaki et al.,
2010), specifically, the HRV (Heart Rate Variability) parameter (Vicente et al.
2010), which can be potentially obtained by non-invasive sensors in contact
with the user’s skin but also the self-reporting of drowsiness using scales such
as Karolinska (Aidman et al. 2015).
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Heart Rate Variability (HRV)

The hypotheses proposed are related with the control of the cardiac rhythm,
managed by the Autonomic Nervous System (ANS), and the response in a
cognitive task:

« ANS activity is modified in presence of stress, fatigue or drowsiness.
Wakefulness state is characterized by an increase of sympathetic activity
and/or decrease of parasympathetic activity, whilst the extreme relaxa-
tion episodes are characterized by increase of parasympathetic activity
(Kokonozi et al., 2008).

. Driving is a cognitive task, where the cognitive demands are constantly
changing. The presence of somnolence is expected to reduce the respon-
siveness to these cognitive demands. However, the driver always tries to
stay awake to drive safely, deriving in the “fighting state” where the driver
tries to focus and stay awake at the same time.

Several parameters of heart rate are related to cognitive demands, and spe-
cifically with the somnolence (Vicente et al. 2010, Furman et al. 2008), being
the most used the following:

. Heart rate variability (HRV) is inversely related with cognitive demands,
so it is expected to increase when drowsiness appears. However, the “figh-
ting state” can induce a reduction on the HRV due to efforts of driver to
stay awake.

. Power on low frequency (LF) band (0.04-0.15Hz) is related with sym-
pathetic activity and high frequency (HF) band (0.15-0.4Hz) with the
parasympathetic activity.

. Drowsiness transitions reduce oscillations in the Very Low Frequency
(VLF) band, anticipating change on LF/HF ratio.

Karolinska Scale

For reports of habitual sleepiness, the Epworth sleepiness scale (Johns, 1991)
is frequently used. For reports of instantaneous sleepiness (across the day and
night), visual analogue scales (Monk, 1989) or Likert scales, like the 7-graded
Stanford sleepiness scale (Hoddes et al., 1973) or the 9-graded Karolinska
sleepiness scale (KSS) (Akerstedt and Gillberg, 1990), are often used.

The KSS was originally developed to constitute a one-dimensional scale
of sleepiness and was validated against alpha and theta electroencephalogra-
phic (EEG) activity as well as slow eye movement electrooculographic (EOG)
activity. It has been widely used and provided reasonable results in studies of
shift work, driving abilities, attention and performance and clinical settings
(Kaida et al. 2006).

Hypothesis

The main hypothesis is that the physical response in drivers can be indirectly
measured via biophysical parameters, such as changes in heart variability
(HRV), and that measurement can lead to early drowsiness detection. The
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Figure 1: Steering wheel cover deployed. The electrodes have an identical look and feel
to that of aregular cover; a visual analog scale (VAS) placed at the center of the steering
wheel, following a color-coded simplified version of the karolinska drowsiness scale
(KDS).

system to capture these data has been developed in two stages: prototype
development and validation.

PROTOTYPE DEVELOPMENT

ECG data acquisition is performed by means of a custom sensing setup
mounted on the steering wheel, developed as an instrumented cover with
which the driver interacts and that integrates the electrodes (needed for Ele-
ctrocardiography - ECG), sensors, analog-to-digital conversion and wireless
communication components (Figure 1).

The sensor setup is composed of a linear potentiometer, a tri-axial acce-
lerometer with +£3g measurement range, and an ECG sensor with £3mV
measurement range. The linear potentiometer has been used to implement
a simplified 5-point version of the Karolinska Drowsiness Scale (KDS); to
eliminate language barriers and facilitate a visual interpretation. The accele-
rometer has been integrated to help assess the steering briskness and vibration
transmitted to the steering wheel. The ECG sensor builds upon a single lead
design with virtual ground (Silva et al. 2011), which has been demonstra-
ted to have a high correlation with the clinical Lead I in previous work
(Da Silva, et al. 2014). Analog-to-digital conversion is performed by means
of a microcontroller based on the BITalino system (Silva ez al. 2011).

EXPERIMENTAL VALIDATION

In Laboratory Validation

To assess the performance of the steering wheel ECG sensor under different
potential driving conditions, one participant carried out several tests in a
driving simulator using as driving scenario the Lane Change Test (LCT) as
defined in ISO 26022:2010, extended to five minutes. During this period of
time, the driver had to use both hands, one hand and no hands contact in
certain periods of time.
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Figure 2: BioSignalsPlux ECG sensors (left) and steering wheel sensors (right).

Materials and Methods

Measuring System and Gold Standard

During the experimental sessions, it was used the system described in Section
2 Proto-type development and compared with a gold standard, namely the
ECG signal obtained with from BioSignalPlux with ECG sensors (Gain:
100, Range: £1.5mV (with VCC = 3V), Bandwidth: 0.5-100Hz, Input
Impedance: >100GOhm).

Driving Simulator

We used a fixed-base driving simulator (De Rosario et al. 2010) in a room
with ambient light, sound and temperature set to simulate the LCT scenario.
The simulator recorded driving-related variables continuously.

Experimental Design

The LCT is a simple driving simulation consisting of a 3000 m straight, three-
lane road. The speed is limited to 60 km/h by the system and the driver has
to drive the whole way at this speed. No other traffic is present on the road.
The drivers are in-structed to change lanes by the time they see the signs that
appear on each side of the road every 150 m. The signs are blank until 40 m
before the sign.

During the test, the ECG signal generated with the steering wheel and the
signal generated with ECG sensor from the chest were captured. Two hands
driving detector algorithm have been developed in order to deal with the ECG
captured with the steering wheel. Both the BioSignalsPlux ECG signal and the
steering wheel ECG signal have been acquired with a 1000 Hz frequency.

Results Analysis

Raw data obtained with the two sensors were compared. The results show
that the steering wheel ECG sensor introduces noise in the signal comparati-
vely with the signal obtained with the gold standard (Figure 2).

Therefore, it is needed to filter and clean the ECG steering wheel signal
in order to obtain the relevant information under different kinds of artefacts.
With this purpose, an algorithm has been developed, which can identify if the
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driver has both hands on the steering wheel and delete the useless information
(signal goes to 0).

Error Estimation in the Heart Rate

Every heart rate sample is calculated as shown in (1), where fs is the sampling
rate and ps is the exact peak sample. Therefore, the distance between two
consecutive peaks defined in number of samples is crucial in order to calculate
the HR.

N 60 * fs
O = @ —ps—1) .

Signals were captured with a sampling frequency of 1000 Hz. The differe-
nce in number of samples of the heart rate between the BioSignalsPlux ECG
signal and the steering wheel ECG is between 1-2 samples. It appears some
bigger sporadic errors due to the loss of one beat.

In Field Validation

A set of data have been gathered from a series of car trips during the months
of July and August 2018 in Portugal. A total of 59 registers were recorded
from one driver.

Material and Methods

The heart rate information has been extracted from the electrocardiogram
(ECG) collected from the steering wheel with embedded sensors described in
previous section.

In addition, the subjective driver’s drowsiness level has been used. The
driver had to periodically indicate his perception of drowsiness while driving
using a series of push buttons located on the steering wheel, corresponding
to the drowsiness levels of the adapted version of the Karolinska scale (from
1 (Extremely alert) to 9 (Extremely sleepy, fighting sleep), also described in
previous section.

Experimental Sessions Results
The preliminary analysis of the raw signal has allowed to check:

. DPresence of frequent saturation in the ECG registers, especially at the
beginning and at the end of each recording. This is due to absence of one
of the hands on the steering wheel.

« Loss of ECG signal due to highly noisy signal or loss of communication

Processing Algorithms

Firstly, to extract time between beats (RR interval), Pan-Tompkins algorithm
(Lee et al., 1996) has been used. The “R” vector is used to calculate the heart
rate.

For HRV analysis, parameters from time domain and frequency domain
are calculated (Shaffer and Ginsberg, 2017):
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Figure 3: Examples of relation between heart rate parameters (blue line) and Karolinska
value (orange line). Left axis is heart rate in ms; and right axis the Karolinska scale
value.

. Standard deviation of normal interbeat intervals excluding those which
are outside the sinus rhythm (SDNN). This parameter is considered the
Gold Standard in HRV.

« Root Mean Squares of Successive Differences (RMSSD): Obtained by
calculating the mean of each difference squared and the square root of
the mean. This parameter informs of those variations that occur in a short
period between RR intervals.

« Low frequency high frequency ratio (LF/HF): Estimate the ratio between
sympathetic and parasympathetic activity.

In order to observe the evolution of the variability during the trips, the data
has been windowed and shifted. Window size is 5 minutes and is shifted each
1 minute, overlapping 80% of the window. It will allow to detect trends and
reduce the influence of ANS response to specific events related with driver
state (e.g. a traffic conflict).

Results

Figure 4 shows the evolution of each parameter for some of the valid recor-
dings, where some trends can be observed, as a decrease of LF/HF ratio and
increase of HRV (in both parameters, SDNN and RMSSDD when the level
of Karolinska moves between 1 and 3, and even seems that the behaviour is
reverted when the drowsiness reaches level 4.
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Figure 4: Mean values for heart rate parameters for Karolinska levels.

Figure 4 shows the parameters mean values of the valid recordings, more
than 5 minutes of useful data and with changes in the Karolinska scale (only
two days). SDNN and RMSSD increase with Karolinska level, but it seems
to stabilize or even decrease above level 3 of Karolinska probably due to
“fight sleep”. LF/HF ratio decreases as the Karolinska scale increases. The
HF peak reflects parasympathetic activity, responsible of the “rest” response.
Therefore, if HF peak is higher of LF is lower, the LF/HF ratio tends to
decrease.

CONCLUSION

The technical viability of using heart rate parameters as an indicator of the
presence of somnolence has been checked. HRV increases and LF/HF ratio
decreases while drowsiness level increases. In some cases, this relation chan-
ges due to the effect of “fighting state”, in which the driver tries to stay awake,
but we need more data of 3-4-5 transition to check this trend.

Limitations in the experimental design (i.e. small sample, the need of using
the two hands on the steering wheel) reduced considerably the number of
recordings with changes on the Karolinska Scale.

Therefore, we have a considerable amount of baseline status, where Karo-
linska scale is 1 (totally awake), but only some recordings have, at the same
time, valid heart rate data and changes on the Karolinska scale.
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