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ABSTRACT

Autonomous vehicle technologies are rapidly growing and are expected to change
transportation habits radically. Autonomous cars increase the likelihood of motion
sickness by allowing everyone in the vehicle to become passengers and perform
non-driving tasks such as reading, working, and socializing. Comfort is one of the
critical factors in the acceptance of autonomous vehicles. This makes accurate esti-
mation of motion sickness a necessity in the development stages of autonomous
vehicles. The sensory conflict theory is a widely accepted theory that explains the
mechanism of motion sickness. Computational models based on the sensory con-
flict theory are used to predict motion sickness and contain two main parts: a human
perception model and a nonlinear fitting function to the subjective feeling of motion
sickness. Models of the human perception, including the dynamics of the vestibular
system, are used to calculate the difference between sensory inputs and the predi-
cted motions in the brain, i.e. the conflict signal, which is the primary cause of motion
sickness. One of the main limitations of motion sickness prediction is how to mathema-
tically model human perception because of the complexity of the psychophysiological
systems. The aim of this work is to implement and analyse different human perception
modelling techniques, such as observer framework in the control theory and optimal
estimator approach using Kalman filters, to evaluate their abilities to integrate with
motion sickness prediction. In this study, the different human perception models are
implemented and analysed using MATLAB/Simulink and the advantages, as well as
disadvantages of the models, are discussed.
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INTRODUCTION

Motion sickness is one of the critical factors related to comfort that could
be affecting the acceptance of autonomous driving. Vehicles driving in auto-
nomous mode will allow the passengers to do Non-Driving Tasks (NDT),
such as reading, socializing, etc., which can increase the chance of becoming
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Figure 1: Sensory conflict theory-based motion sickness models.

motion sick (Sivak and Schoettle, 2015). The vestibular system plays a pri-
mary role in motion sickness, as given by the fact that people who do not
have functioning vestibular organs do not become motion sick. There is a
strong belief that motion sickness during travelling is caused by conflicting
sensory information about the human state of motion. The vestibular system
is a sensory system that is responsible for providing the brain with infor-
mation about motion, head position, and spatial orientation. Therefore, a
clear understanding of the dynamic behaviour of the vestibular system and
human perception is crucial for analysing discomfort. The aim of this study
is to analyse human perception estimation algorithms for identifying motion
sickness in Autonomous Driving (AD). Provided analyses include computer
simulations (in Matlab/Simulink) that can also be used for a better under-
standing of the model behaviour and human perception which further help
to model motion sickness.

The block diagram in Figure 1 represents a general structure of the motion
sickness models based on the sensory conflict theory, which consists of two
main parts. The first part consists of mathematical models of the spatial orien-
tation perception of humans, including the dynamics of the vestibular system.
The vestibular organs consist of semicircular canals, which detect angular
motions, and otoliths, which detect gravito-inertial force (GIF), and their
dynamics are simply modelled as transfer functions. The second part of the
sensory conflict theory-based model focus on modelling the subjective feeling
of motion sickness using a conflict signal that comes from the human perce-
ption. The difference between the calculated signal by the neural system and
sensed signal causes the conflict signal. The conflict signal is used as an input
to a nonlinear function that accounts for the subjective feeling of motion
sickness.

HUMAN PERCEPTION MODELING

For decades, researchers have configured models by conducting experi-
ments and examining the responses of subjects to find an appropriate and
reliable model of human perception. Merfeld developed a model in Luen-
berger (e.g. linear) observer framework (Merfeld and Zupan, 2002) which
is one of the common methods for human perception modelling and builds
on his previous work on squirrel monkeys (Merfeld, 1995). Haslwanter
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Table 1. Overview of human perception models in the literature.

Modelling Framework Authors

Luenberger Observer Haslwanter et. al. (2000), Merfeld (1995, 2002),
Vingerhoets et. al. (2007), Newman (2009)

Kalman Filter Borah (1979) and Lim et. al. (2017)
Extended Kalman Filter (EKF) Pommellet (1990)
Unscented Kalman Filter (UKF) Selva (2009)
Particle Filter Karmali and Merfeld (2012)

modified the Merfeld model to fit with the eye movement response during
Off-Vertical Axis Rotation (OVAR) experimental tests done on human test
subjects (Haslwanter et al., 2000). The observer approach has the advantage
of merging multiple internal models into one observer to monitor different
states and enable interaction between them. However, the gains are free para-
meters, so the modeler fine-tunes them to align with empirical observations.
Furthermore, the estimates of the states are carried out without considering
noise. However, the human sensory system is noisy and inaccurate; therefore,
it is crucial to account for noise or uncertainty during state estimation.

The estimator approach to model human perception was pioneered by
work by Borah et al. where they modelled the human perception using the
Kalman filter estimator (Borah et al., 1979). The estimator is essentially
representing the internal model that processes the error between the affe-
rent response and the estimated sensory signal and replaces the static gain
in the Luenberger observer models, with the Kalman gain which takes into
account the fact that the measurement of the sensory dynamic and its process
is noisy and non-deterministic. Further development was done by Pommel-
let by building an Extended Kalman Filter (EKF) model (Pommellet, 1990).
The main difference to the Borah Kalman Filter is the use of quaternion inte-
gration to model the rotational velocity cue to relative gravity orientation,
the use of visual saturation to take into account the vection phenomena, as
well as the noise dynamics which are significantly different from the Borah
model. Selva (Selva, 2009) proposed an Unscented Kalman Filter (UKF) based
model which further developed the Pommellet EKF model. The improvement
is based on that the accuracy of the EKF model is limited mathematically
into first-order in terms of the posterior distribution states. Karmali and
Merfeld implemented a Particle filter estimator since the statistical accuracy
level observed in Kalman Filter, EKF and UKF are limited due to the Gaussian
distribution assumptionmade in these methods (Karmali andMerfeld, 2012).
The Particle Filter approach could lead to relatively high computational cost,
but on the other hand it also uses a distributed and parallel processing of
the processing dynamics which represent more realistic computational pro-
cessing in the brain. An overview of human perception models in literature
can be seen in Table 1.

Vestibular Organ Modeling

There is a common consensus in the research community that the Otolith
could be modelled as an overdamped mass-spring-damper system based on
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the hair cell deflection of the organ which influences the afferent response to
the CNS. The latest development has been done by Telban and Cardullo (Tel-
ban and Cardullo, 2005) and this is the most complete representation of the
transfer function according to a literature review of various otolith models
done by Asadi (Asadi et al., 2016). In observer-based human perception
models, commonly a unity matrix is used to model the otolith organ dyna-
mics. In the optimal estimator-based human perception models (e.g. Selva),
the transfer function by Telban and Cardullo (Telban and Cardullo, 2005) is
used. This transfer function is mathematically represented as

TOTO =
AFR(s)
f (s)

= KOTO
(τls+ 1)

(τLs+ 1)(τSs+ 1)

= 33.3
(10s+ 1)

(5s+ 1)(0.016s+ 1)

where τL is the lead time constant, τl is the long time constant and τs is the
short time constant,KOTO is the static Otolith gain, AFR is the Afferent Firing
Rate and f is the gravito-inertial force (GIF).

The other part of the vestibular organ modelling is the Semicircular Canal.
It is commonly modelled using a torsion pendulum with a high degree of
damping and specific parameters. The angular velocity vector is represented
by ωs. In observer-based human perception models, the semicircular canal
organ is modelled with a 2nd order transfer function developed by Fernandez
and Goldberg (Fernandez and Goldberg, 1971), (Telban and Cardullo, 2005)
and (Asadi et al., 2017).

TSCC =
AFR(s)
ωs

=
τlτas

2

(τ as + 1) (τ ls + 1)
=

5.73·80 s2

(80s + 1) (5.73s + 1)

where τa is the adaptation operator and τl is the long time constant. Has-
lwanter used the same transfer function with selected τa = 7 and τl = 190
(Haslwanter et al., 2000).

Motion Sickness Modeling

A widely recognised theory proposes that motion sickness is caused by a
signal mismatch between the internal model in the brain and received signals
from sensory organs. The sensory conflict theory-based models are focused
on the mechanism of motion sickness and use a modelled vestibular system
and Central Neural System (CNS). Current motion sickness models are based
on the observer framework of control theory approaches of modelling human
motion perception. The neural mismatch model was proposed by Reason
(Reason, 1978) and after modelled mathematically by Oman (Oman, 1990).
Bos and Bles proposed the Subjective Vertical Conflict (SVC) theory model
called 1D-SVC, which interprets Oman’s heuristic model (Bos and Bles, 1998
and 2002). Bos and Bles proposed a nonlinear fitting function to experimen-
tal results of subjective human motion sickness feeling due to vertical motion
disturbances by McCauley (McCauley, 1976). Braccesi and Cianetti propo-
sed an extended version of the 1D-SVC model to a 3D-SVC model called
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vestibular 3D model (UNIPG) and visual-vestibular models (UNIPGSeMo)
(Braccesi et al, 2011a+b). A 6-DOF motion sickness model was proposed by
Wada et al. (Wada et al., 2015) and Kamiji et al. (Kamiji et al., 2007). The
Wadamodel expands the previously 1-DOF Bos and Bles model into a 6-DOF
model by considering the interaction between the semicircular canals and the
otolith organ. In this model, the nonlinear fitting method, feedback conflict
mechanism, sensory dynamics, and internal model directly adapt from the
Bos and Bles model. Moreover, the model also includes the rotational velo-
city cues contribution on the relative gravity representation from the Merfeld
model. Recently, the 6-DOF mathematical model of motion sickness seve-
rity prediction has been extended by considering visual inputs (Wada et al.,
2020). The main difference between the model by Wada and the previous
human perception model by Merfeld is that the efference copy of body dyna-
mic is modelled as a feedforward static gain. The static gain is then developed
later into a dynamic feedforward gain (Wada, 2021) based on the sequential
learning of the body dynamics by utilizing the Recursive Gaussian Process
Regression (RGPR) method.

Evaluation and Test Methods

Two physiological parameters are considered in this study to determine the
relationship between the human perception models and motion sickness
models: The velocity storage time constant (τVS) and the subjective vertical
time constant (τSV).

The velocity storage mechanism was firstly introduced by Raphan et al.
(Raphan et al., 1979) as a mechanism that when the sensed perception affe-
rents from cupula were passed to the CNS, they were processed with filters
which have a certain time delay constant of a leaky integrator due to the
neural storage, hence giving the prolonged rotational velocity sensation. The
velocity storage time constant could be observed by calculating the time that
it takes for the rotational velocity perception to decay to 36.8% of the peak
value during trapezoidal input stimulus which is done in the Earth Vertical
Axis Rotation (EVAR) tests.

The subjective vertical time constant could be observed by calculating
the time it takes to reach the magnitude of 63.2% of the steady-state final
condition during the Fixed Radius Centrifugation (FRC) test.

In this study, the human perception models and motion sickness models
are assessed by their ability to predict these two parameters (τSV and τVS) in
comparison with the experimental test results.

The EVAR validation for velocity storage time (τVS) was simulated by
inputting the stimulus input of a trapezoidal yaw motion with the peak of
60 deg/s reached in a second (60 deg/s2 rotational acceleration) during the
acceleration and then keeping a constant peak value for 45 seconds. After
that, the human was decelerated at the same rate as the acceleration. The
simulation results are then compared with experimentally measured velocity
storage time constant in yaw direction for adults (e.g. the average 17.4 s for
normal subjects using eyemovements recordings), according to Bertolini et al.
(Bertolini et al., 2012).
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Figure 2: Simulation results for human perception and motion sickness models where
θsens denotes sensed GIF tilt, θsubj denotes subjective GIF tilt perception, ωsubj denotes
the subjective rotational velocity perception. (a): velocity storage time constant evalu-
ation under EVAR test. (b): the subjective vertical time constant evaluation under FRC
test.

The subjective vertical time constant (τSV) in the Fixed Radius Centrifuga-
tion (FRC) test was experimentally performed by Merfeld (Merfeld, 2001).
The FRC test comprises seated human subjects rotated in a simulator with a
peak yaw velocity of 250 degree/s after 10 s of stimulation. Due to the centri-
petal force experienced at a radius of 0.54 m from the center of the rotation,
the human subject will experience lateral acceleration as well with ay = −ω2r.
The consequence of this experimental stimulation is that the direction betw-
een the perception of the GIF wrt. gravity compared against the direction
of the sensed GIF wrt gravity, will be delayed with a certain time constant
before the GIF perception goes past the steady-state sensed GIF and eventu-
ally reaches a steady-state condition as well. This time constant is called the
subjective vertical time constant (τSV) and is calculated experimentally as an
average of 28.1 s according to a study by Merfeld for the facing the motion
setup while the humans were rotated in the clockwise direction (Merfeld,
2001). Special laboratory equipment was used to record the perceptual GIF
tilt from subjects’ perceived earth horizontal axis.

RESULTS AND DISCUSSION

From the simulation results presented in Figure 2 (a), it can be observed that
the velocity storage time constant for the Merfeld (τVS = 17 s), Haslwanter
(τVS = 13.4 s) and Selva (τVS = 16.7 s) models are in good agreement with
the experimental velocity storage time constant of 17.4 s. The Pommellet
model has given a velocity storage time constant (τVS = 20.8 s) which is
higher with respect to the experimental results due to noise tuning (selected
process noise Q = 0.3) in the model parameters. In addition, the Vingerhoets
(τVS = 27.1 s) and the Newman model have overestimated the velocity-time
constant (τVS = 26.1 s), due to the adaptation of the free gain parameters.
However, Pommellet, Vingerhoets andNewman’s models are still in the range
of experimentally determined adult human responses.

For the subjective vertical time constant evaluation, it can be seen in
Figure 2 (b) that Merfeld and Newman’s models give the closest resemblance
to the experimental result of average 28.1 s. The transient response of the
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Vingerhoets model behaviour is similar to Newman’s model with a longer
time delay to sense GIF tilt. The simulation results also show that the Wada
motion sickness model could not predict the tilt angle perception (subjective
vertical constant) as observed in the experimental tests but agreed with the
physical stimulus which was also demonstrated by (Uefune et al., 2016). The
results indicate that the human perception models which fit with the expe-
rimental results of human perception tests could be integrated with motion
sickness models to improve their capability of motion sickness prediction.
Irmak et al. (Irmak et al., 2021) have experimentally investigated the relati-
onship of motion perception parameters (e.g. velocity storage and subjective
vertical time constants) to motion sickness.

The Selva model which represents the estimator model with the biologi-
cal noise in the measurement and process of the model is possibly the most
plausible modelling source for further improvement of the available motion
sickness models (e.g. Wada or UniPG), assuming that the noise are Gaussian
distributed. Alternatively, the Particle filter approach by Karmali and Mer-
feld could also be used in the case that the sensory dynamics noise are of
non-Gaussian distributed type.

CONCLUSION

The main contribution of this paper is that different human perception
models were implemented and evaluated under test conditions. The simula-
tion results show that the implemented human perception models are able to
predict the human adult range of sensation measured by experimental tests.
These human perception models can also be tuned to fit with different expe-
rimental results of human perception. The study also indicates that accurate
human perception modelling could improve the prediction of conflict signal
estimation. Integrating accurate human perception models in motion sickness
models can improve their capability to predict motion sickness feelings. For
future studies, there is still a need to further investigate the integration of
human perception models, which includes visual and somatosensory input,
as well as improve the nonlinear function part that predicts the feeling of
motion sickness.
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