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ABSTRACT

Mobile applications that provide GPS-based route navigation advice or driver dia-
gnostics are gaining popularity. However, these applications currently do not have
knowledge of whether the driver is performing a lane change. Having such informa-
tion may prove valuable to individual drivers (e.g., to provide more specific navigation
instructions) or road authorities (e.g., knowledge of lane change hotspots may inform
road design). The present study aimed to assess the accuracy of lane change reco-
gnition algorithms that rely solely on mobile GPS sensor input. Three trips on Dutch
highways, totaling 158 km of driving, were performed while carrying two smartpho-
nes (Huawei P20, Samsung Galaxy S9), a GPS-equipped GoPro Max, and a USB GPS
receiver (GlobalSat BU343-s4). The timestamps of all 215 lane changes were manu-
ally extracted from the forward-facing GoPro camera footage, and used as ground
truth. After connecting the GPS trajectories to the road using Mapbox Map Match-
ing API (2022), lane changes were identified based on the exceedance of a lateral
translation threshold in set time windows. Different thresholds and window sizes
were tested for their ability to discriminate between a pool of lane change segments
and an equally-sized pool of no-lane-change segments. The overall accuracy of the
lane-change classification was found to be 90%. The method appears promising for
highway engineering and traffic behavior research that use floating car data, but
there may be limited applicability to real-time advisory systems due to the occasional
occurrence of false positives.
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INTRODUCTION

Systems capable of detecting lane changes, such as lane departure warning
systems, have become common in new cars. These systems usually rely on
cameras to detect lane boundaries (e.g., Toyota, 2022; Volkswagen, 2021).
Less common are methods that identify lane changes without using cameras.
Such methods could be relevant for three reasons.

The first reason is that, even though modern cars are equipped with
cameras, it may take many years before this technology is commonplace.
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Young drivers, for example, often buy their vehicles second-hand and thus
have to rely on safety systems in old models, yet it can be argued that this is
the groupmost in need of modern safety systems (Lee, 2007). The widespread
availability of smartphones may provide such an opportunity. If lane depar-
ture warning systems became available on smartphones, they could provide
safety alerts and lane-level navigation assistance to virtually all drivers.

A second motivation for developing cameraless methods of lane change
detection lies in their potential for traffic behavior research and road design.
The increasing availability of floating car data allows for studying traffic with
more detail than traditional, hardware-intensive methods of data collection
such as induction loops and traffic cameras (e.g., Arman and Tampère, 2021).
Floating car data can reveal how groups of drivers perform maneuvers on
specific sections, which may inform the design of highways (Vos et al., 2021).

Thirdly, knowledge on where, how often, or how aggressively drivers
change lanes can serve as input for driving style recognition algorithms, which
are used in smartphone applications that give drivers feedback and coaching
about their driving style (for reviews, see Michelaraki et al., 2021; Singh and
Kathuria, 2021). Such applications are increasingly used by vehicle insura-
nce companies to offer discounted premiums to drivers that adopt non-risky
driving styles (Baecke and Bocca, 2017; Tselentis et al., 2017).

Related Work

The accuracy of consumer-grade and smartphone-based GPS receivers is in
the range of 3–13 meters (Merry and Bettinger, 2019; Izet-Ünsalan and Ünsa-
lan, 2020; Wing et al., 2005), which is too low to estimate the receiver’s
location on a lane-level resolution. However, as the error in the measure-
ments is largely caused by atmospheric disturbances or signal reflections
on surrounding structures, it is expected to remain relatively constant on
open highways (Sanz Subirana, 2011; Izet-Ünsalan and Ünsalan, 2020). This
means that relative changes in the GPS trajectory may be indicative of cer-
tain highway maneuvers. When combined with information about the road
trajectory, changes in the lateral distance between the road and the vehi-
cle’s trajectory may be used to identify lane changes. Sekimoto et al. (2012)
demonstrated this by plotting the lateral distance to the road centerline of six
lane changes. Their results showed that lane changes were visually discrimi-
nable from straight driving, but a formal assessment was lacking. A further
evaluation of this concept was performed by Faizan et al. (2019). By calcula-
ting the difference in heading angle between the vehicle’s trajectory and the
road trajectory and multiplying its sine with the traveled distance since the
last observation, they obtained the “instantaneous lateral distance,” which
is, in fact, a measure of lateral velocity. They then integrated this variable
by summing up subsequent values, obtaining the “accumulative lateral dista-
nce.”When this lateral drift exceeded a threshold of 1.5, it would present an
alarm. They reported high detection accuracies, but it should be noted they
relied on a GPS device that sampled at 10 Hz, whereas most smartphones
typically operate at sampling rates of 1 Hz.
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Figure 1: Route (blue) with excluded section from Trip 1 after a wrong exit (red).

Aim

The literature to date suggests that it is feasible to detect lane changes
based solely on GPS signals. However, in the existing analyses we found,
detail was missing on how such algorithms perform on highway sections
that contain many irregularities such as curves and on- and off-ramps, and
how performance varies between devices. The current paper describes the
design and evaluation of a lateral-distance-based algorithm on ‘easy’ roads
(a straight highway section leading from Delft to Rotterdam) and on a more
difficult highway (Rotterdam’s ring road). Furthermore, we investigated if
performance varies between four portable devices.

METHOD

Data Collection

Data were collected during three trips from the city of Delft (exit “Zuid”),
via the A13 to the Rotterdam Ring Road, making a full lap on the Ring,
and back to Delft-Zuid over the A13 (Figure 1). The total distance traveled
during the three trips, excluding the Beneluxtunnel and an accidental detour
in Trip 1, was 158 km. The first trip was on June 4, 2021, in a 2018 Peugeot
108 (915 kg), and the second and third trips were on October 21, 2021, in a
2021 KIA Picanto (974 kg), both small city cars. The first author drove the
car and changed lanes whenever it was judged safe and unobtrusive to other
traffic. This resulted in 215 lane changes (110 right, 105 left). The lane width
on the route was 3.5 m. The speed limit was 100 km/h, which was also the
target speed of the driver. The speed varied somewhat due to occasional busy
segments on the Rotterdam Ring road.

GPS data were recorded at a frequency of 1 Hz on a Samsung Galaxy S9
and a Huawei P20 Lite (using the Android app “GPS Logger” by BasicAir-
Data, 2022), on a GlobalSat BU343-s4 USB GPS receiver, and on a GoPro
Max. The GoPro recorded GPS at 18 Hz, which was downsampled to 1
Hz for comparability with the other signals by taking the last entry of every
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Figure 2: GoPro’s view at the moment a lane change was annotated.

18 instances. The smartphones were mounted to the dashboard using stan-
dard car phone holders, whereas the GlobalSat’s antenna was magnetically
attached to the top of the car. The GoPro was mounted facing forward beh-
ind the windshield in the middle of the dashboard. Besides recording GPS, the
GoPro made video recordings which were later used to manually annotate
the moments the car changed lanes. Lane change timestamps were annotated
when the GoPro’s view was visually centered with a lane boundary marking
(Figure 2). Double lane changes were annotated when the car drove on the
middle of the center lane and were treated the same as single-lane change
events in the analysis.

Data Processing

The road geometry was obtained by snapping the GoPro’s GPS recordings
to OpenStreetMap’s road network using Mapbox Map Matching API v5.
For each GPS coordinate, the lateral distance to the road’s trajectory was
calculated. The distance was given a positive sign when the GPS coordinate
was on the right side of the road (when facing in the direction of travel) and a
negative sign when it was on the left side of the road. This resulted in a signal
representing the lateral position of each GPS coordinate with respect to the
road. Figure 3 shows an example of a recorded lane change and its lateral
position signal during the lane change.

Analysis

We developed an algorithm that discriminates segments with a lane change
from segments without a lane change. Therefore, we first created two classes
consisting of isolated segments with a window size W of data points.

The positive class contained segments during which a lane change occur-
red. A segment was created for each lane change annotation timestamp by
extracting the W data points with timestamps nearest to the lane change
timestamp. As the sampling frequency of each device was 1 Hz, the duration
of each extracted segment (the time between the first and last element) was
W − 1 seconds. The lateral position values of all left lane changes were mul-
tiplied by −1. This way, lane changes in both directions can be recognized by
the same algorithm.
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Figure 3: a: Map view of road section with a lane change. b: Lateral distance of the GPS
points relative to the road during the lane change (in meters). c, d, e: Video segments
of the lane change from the perspective of the ego vehicle, where panel (d) shows
the moment the lane change was manually annotated (the camera view is visually
centered with the lane boundary).

The negative class consisted of segments during which no lane change was
performed. These segments were obtained by splitting up segments during
which no lane change annotation was present into non-overlapping intervals
ofW − 1 seconds. Only segments were included that were at least 5 seconds
removed from any lane change annotation. This procedure resulted in a larger
pool of negative segments than positive intervals (more time is spent dri-
ving without changing lanes). To create classes of equal size, samples were
randomly drawn from this pool without replacement.

The difference between the first and the last element was computed for
each segment. This value represented the accumulated lateral translation
during a segment. If this value exceeded a threshold T, the segment was classi-
fied as a lane change; if this value did not exceed T, the segment was classified
as no lane change. The first step of the evaluation was to find the threshold
values T and window sizeW that gave the best classification accuracy for all
devices.

For the remainder of the analysis, we fixed the values of T andW to those
that gave the highest classification accuracy. Next, using the same procedure
as above, we evaluated the classification accuracy between the devices and
between the A13 section and the Rotterdam Ring section.

RESULTS

Figure 4 shows lateral position data for all segments and devices combined
when using a window size W of 8 data points. It can be seen that, on a
group level, lane-change segments are distinguishable from no-lane-change
segments.
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Figure 4: Left: Lateral position relative to the segment’s mean for all lane changes and
all four devices (n = 215 lane changes × 4 devices − 1 missing segment = 859). The
lane change took place at Time = 0 s. Right: Lateral position relative to the segment’s
mean for segments in which no lane change took place.

Table 1. Classification accuracy when varying the lateral translation threshold T for a
fixed window size W = 8.

Threshold T (m) Accuracy TP FP TN FN TPR FPR

0.0 0.724 822 438 421 37 0.957 0.510
0.2 0.771 815 349 510 44 0.949 0.406
0.4 0.799 805 292 567 54 0.937 0.340
0.6 0.825 801 242 617 58 0.932 0.282
0.8 0.847 798 202 657 61 0.929 0.235
1.0 0.865 790 163 696 69 0.902 0.190
1.2 0.881 779 125 734 80 0.907 0.146
1.4 0.889 769 100 759 90 0.895 0.116
1.6 0.894 757 80 779 102 0.881 0.093
1.8 0.892 745 71 788 114 0.867 0.083
2.0 0.888 722 55 804 137 0.841 0.064
2.2 0.875 691 47 812 168 0.804 0.055
2.4 0.857 657 43 816 202 0.765 0.050
2.6 0.836 608 31 828 251 0.708 0.036
2.8 0.814 566 27 832 293 0.659 0.031
3.0 0.786 517 25 834 342 0.602 0.029

Table 1 shows the effect of the lateral translation threshold T for a fixed
window size of W = 8 seconds. It can be seen that, as the threshold increa-
ses, the number of true positives (TP) and false positives (FP) monotonically
decrease, whereas the number of true negatives (TN) and false negatives (FN,
i.e., misses) monotonically increase. Note that the true positive rate (TPR) is
defined as TP/(TP + FN), whereas the false positive rate (FPR) is defined as
FP/(FP+TN).

The combination ofW and T that yielded maximal classification accuracy
was found by varying the window size W from 2 to 8 data points and by
varying the threshold T with increments of 0.1 m for each window size W.
Table 2 shows that the highest accuracy (0.905) was achieved using a window
size of 6 and a lateral translation threshold of 1.5 m, with accuracy defined as
(TP + TN)/(TP + FP + TN + FN). Of note, classification accuracy was still
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Table 2. Optimal lateral translation thresholds for varying window size W.

Window size W Threshold T (m) Accuracy TP FP TN FN TPR FPR

8 1.5 0.895 767 89 770 92 0.893 0.104
7 1.6 0.888 752 86 773 107 0.875 0.100
6 1.5 0.905 765 69 790 94 0.891 0.080
5 1.3 0.902 767 77 782 92 0.893 0.090
4 1.2 0.899 747 62 797 112 0.870 0.072
3 0.8 0.880 745 93 766 114 0.867 0.108
2 0.4 0.868 740 107 752 119 0.861 0.125

Table 3. Classification accuracy per device (W = 6, T = 1.5 m).

Device Accuracy TP FP TN FN TPR FPR

GlobalSat 0.893 188 20 194 26 0.879 0.093
GoPro Max 0.923 197 15 200 18 0.916 0.070
Huawei P20 Lite 0.886 188 22 193 27 0.874 0.102
Samsung Galaxy S9 0.895 190 20 195 25 0.884 0.093

Table 4. Classification accuracy for the A13 (Delft–Rotterdam, Rotterdam–Delft) and
Ring Rotterdam sections, all devices combined (W = 6, T = 1.5 m).

Road Accuracy TP FP TN FN TPR FPR

A13 0.939 215 8 228 21 0.911 0.034
Ring Rotterdam 0.890 550 64 559 73 0.883 0.103

high (0.868) for a window size of 2, i.e., when the lateral position difference
between only two data points was used.

The above parameter values (W = 6, T = 1.5 m) were used to compare the
devices (Table 3) and the two highway segments (Table 4). It can be seen that
the four GPS devices yielded similar accuracies, with the GoPro Max coming
out slightly better than the other three devices. Accuracy was considerably
worse on the Ring Rotterdam than the relatively straight and uncluttered
A13 highway.

A Closer Examination of False Predictions

A visual inspection of falsely classified segments revealed that incorrect pre-
dictions tended to be caused by road geometry definitions. We found this to
be the case occasionally on curved sections, under overpasses, and at secti-
ons with lane splits. Figure 5 shows two relatively straight sections where all
four recording devices gave an incorrect prediction. The first segment shows
a scenario where a lane change was made, but it was not identified (false
negative) as the road geometry moves in the lane change direction. In the
bottom example, no lane change was performed, but as the road definition
jumped sideways, it decreased the lateral threshold, resulting in an incorrectly
flagged fragment (false positive).
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Figure 5: Examples of a false negative (top) and a false positive (bottom). In these
figures, the vehicles travel from left to right.

DISCUSSION

This study examined whether lane changes can be identified using GPS posi-
tion data for different off-the-shelf devices and different highway sections.
The results showed an overall true positive rate of 89% and a false positive
rate of 8%. It was found that the GPS devices yielded similar classification
performance. Furthermore, it was shown that the false positive rate was 3%
on straight highway roads, while it was 10% on the more cluttered ring road
consisting of curves, exits, lane splits, etc.

The development of a real-time warning system, such as a drowsiness dete-
ction system that measures if the vehicle drifts out of the lane, would require
further investigation. The findings of the current study suggest that this may
be hard to achieve using only GPS. In the current evaluation, balanced classes
were created. In reality, there will be proportionally more segments without
lane change, meaning that the number of false positives per minute of driving
will be high (8% for every 5 seconds totals approximately 1 false alarm per
minute). Systems that frequently provide false warnings tend to be turned off
by drivers (Reagan et al., 2018). Although the false alarm rate can be decre-
ased by increasing the detection threshold, this would go at the cost of the
ability to correctly predict lane changes. Another factor is that lane changes
in the positive class were centered around the lane changes. For real-time
applications, a rolling window approach will have to be used. In our study,
lane changes were detected after allowing some time for the lateral position
to accumulate, which might not occur fast enough for lane drift warnings.
Also, it is noted that our current method detects lane changes, not the lane
on which the car was driving.

On the other hand, the obtained accuracy may be high enough for driving
style recognition algorithms which aim to establish whether the driver is a
frequent lane changer or not (if only road segments free of irregularities such
as exits or curves are considered). Such driving style recognition algorithms
could benefit from further information such as traffic density or from geo-
specific approaches that compare the driver with other drivers driving on the
same road at the same time of day. Our study focused on detecting the occur-
rence of a lane change. Future research could try to infer the aggressiveness of
the lane change, for example, by incorporating lateral velocity information.
It is also expected that our method is useful for road design applications, for
example by determining ‘lane change hotspots’ based on floating car data.
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The collected data were limited to driving by the first author, who chan-
ged lanes whenever this was deemed safe. The classification results reported
in this paper should be validated on naturalistic driving data from a more
diverse pool of drivers, vehicles, devices, roads, and weather conditions. The
present study used GPS signals to detect lane changes. Future research could
use gyroscopes and accelerometers, which are available in smartphones as
well. This approach has been tried by Ramah et al. (2021), who observed that
lane-change detection using these sensors alone is difficult if a lane change is
gentle. Future research could use sensor fusion of smartphone GPS and IMU
data (and see Islam and Abdel-Aty, 2021).

In conclusion, this study established the feasibility of detecting lane chan-
ges using portable GPS devices. Lane change information based on floating
car data may be useful for road design and traffic flow management.
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