
Human Factors in Software and Systems Engineering, Vol. 61, 2022, 38–43

https://doi.org/10.54941/ahfe1002521

Architectural Approaches to Overcome
Challenges in the Development
of Data-Intensive Systems
Aleksandar Dimov, Simeon Emanuilov, Boyan Bontchev,
Yavor Dankov, and Tasos Papapostolu

Faculty of Mathematics and Informatics, Sofia University “St Kl. Ohridski”,
Sofia, Bulgaria

ABSTRACT

Orientation of modern software systems towards data-intensive processing raises
new difficulties in software engineering on how to build and maintain such systems.
Some of the important challenges concern the design of software architecture of
such systems. In this article, we survey the fundamental challenges when designing
data-intensive computing systems and present some of the most popular software
architectural styles together with their potential to tackle these challenges.

Keywords:Data intensive systems, Big data, Software architecture, Software architectural styles
and patterns

INTRODUCTION

Traditionally, data-intensive systems have emerged from the notion of data-
intensive computing, which was inspired by the requirements of traditional
science disciplines while moving to the so-called eScience (Hey et al., 2009) –
a research perspective that involves extensive usage of Information and
Communication Technologies in all research initiatives.

Nowadays, most computing systems collect and process data from vari-
ous sources, ranges, and applications. As a result, there is a shift in the
area of software engineering from software-intensive systems towards data-
intensive systems. More challenges reside in size (e.g., amount of data), its
complexity, heterogeneity, and velocity. This requires activities that differ
from solving traditional software development problems. For example, in
data-intensive systems, the machine’s computing power is not the main limi-
ting factor but the I/O and additional quality characteristics like reliability,
scalability, maintainability, etc. (Kleppmann, 2017).

To manage the level of complexity in software systems and deal with
various quality attributes, one should put effort into the design of software
architecture. It is widely recognized as an essential factor for the successful
development and maintenance of software systems during their entire life-
cycle. A common definition of architecture is “the structure or structures of
the system, which comprise software components, the externally visible pro-
perties of those components and the relationships among them” (Bass et al.,

© 2022. Published by AHFE Open Access. All rights reserved. 38

https://doi.org/10.54941/ahfe1002521


Architectural Approaches to Overcome Challenges in the Development 39

2013). One of the most promising applications of software architecture is
the definition of patterns (also called architectural styles) that help to reuse
certain solutions to challenges in systems development.

This paper analyzes the applicability of some of the popular architectural
styles for addressing the main architectural challenges when designing data-
intensive systems.

The structure of the paper is as follows: Section 2 presents the architectural
challenges for data-intensive systems; Section 3 discusses some of the most
popular architectural styles and makes an analysis of their application with
respect to the challenges and finally, Section 4 concludes the paper and states
some directions for future research in the area.

ARCHITECTURAL CHALLENGES FOR BIG DATA

Some research works are available that try to identify architectural challenges
in development of data-intensive systems. For example, according to (Mat-
tmann et al., 2011), there exist seven key architectural challenges concerning
development and implementation of data-intensive systems:

• Data volumes – huge-scale data volumes, that may go up to petabytes (PB)
and exabytes (XB), pose massive problems with transfer and processing
compared with average data sizes (e.g., gigabytes – GB). It should be noted
that software architecture should also tackle these hardware limitations
that may lead to problems caused by data volume.

• Data dissemination – delivery of data to potentially distributed tenants
may need to take specific actions when trying to satisfy some specific
system qualities like performance, reliability, and security.

• Data curation – architecture should ensure that all data within the data-
intensive system share common properties.

• Software reuse and use of open-source software.
• Search of data – the system should provide mechanisms to find and present

the location of data to tenants. Note that search is different from data
dissemination and retrieval.

• Data processing and analysis – pre- and post- processing/analysis of data
in order to be useful for end-users pose new challenges with respect to
computational and hardware resources.

• Information modeling – how metadata will be organized to facilitate
interoperability and connectivity.

All the above-listed challenges are interconnected with each other. The-
refore, the design of the architecture of data-intensive systems and their
development requires an overall strategy that addresses all difficulties and
challenges.

Furthermore, according to (Zhao et al., 2014), challenges related to the
massive amounts of data (Big Data) may also regard the system’s scalabi-
lity, programmability, and performance. As an example, the challenges for
data-intensive systems regarding the traditional scientific workflows, invo-
lve big data problems referring to “data scale and computation complexity,
resource provisioning, collaboration in heterogeneous environments” (Zhao



40 Dimov et al.

et al., 2014). Concerning the cloud-storage for data-intensive systems, the
classification of the main challenges includes (Tudoran et al., 2014):

• Support for massive unstructured data
• Fine-grain access to data subsets
• Support for operations on multiple files
• High throughput under heavy access concurrency
• Support for highly parallel data workflows
• Provision of monitoring and logging services

The first two of these challenges deals with already discussed ones about
data volume and data curation, while the next three relate to concurrency
and synchronization aspects.

Another kind of challenge also emerges due to data volume – the risk of
processing data in a biased way. For example, machine-learning algorithms
are a common technique widely used today in numerous fields. But a “blind”
application of such algorithms can lead to biased results (Bolukbasi et al.,
2016).

Since it is trained on data, such a process that does not consider the specifi-
cities of a dataset could amplify the bias existing in the given data. There have
been different cases where such algorithms have been found to have biased
results and discriminate based on gender, race, etc. The problem is complex
and challenging to solve, and only with continuous assessments and testing
can be tamed. A positive development that can be identified is that the issue
has gained popularity and research interest to eliminate such biased results.
A recent example is Twitter (Chowdhury, 2021), which offered a prize for
identifying biased results in their image cropping algorithm, and a variety of
biased results was pinpointed, such as the favoring of young, thin females or
Latin text over Arabic script.

In conclusion of this section, we may distinguish the following main
architectural challenges toward database-intensive systems:

• How to deal with big volumes of data, not only about processing, but also
in terms of storage, bandwidth, and dissemination.

• How to provide search of data according to end-user requirements (like
precision and performance of search).

• How to manage concurrency and provide synchronization and communi-
cation between processes and threads of the system.

• How to deal with data curation.
• How to deal with information modeling.

Finally, the main challenges that software architecture should deal with,
according to different surveys, may be summarized as follows: (1) Data
volume; (2) Data search; (3) Concurrency; (4) Data curation, and (5)
Information modeling.

ARCHITECTURAL STYLES IN DATA INTENSIVE SYSTEMS

A successful generalization of the notion of software architecture is the defi-
nition and usage of architectural styles (Garlan, 1994; Mehta, 2003; Sharma



Architectural Approaches to Overcome Challenges in the Development 41

Table 1. Mapping of architectural styles to data-intensive systems challenges.

Data
volume

Data
search

Concurrency Data
curation

Information
modeling

Shared data E E E N E
Sharding E E N N N
Pipe and filter E N E N N
Priority queue N N Y E N
Publish-Subscribe Y Y Y E E
Wrapper E E E E E
Caching Y Y E N N

Legend: Y – Yes; N – No; E – to some extent (needs additional implementation and research).

et al., 2015). They represent successful architectural configurations that recur
in different software development projects. Architectural styles define types
of software components, the types of connectors between them, and the
bindings between them. Finally, styles may be used as standard means to
fulfill quality requirements and this way – to resolve typical software design
challenges.

In this section, we are going to present some common architectural styles,
as they are discussed in various research works in the area of software archi-
tecture (Garlan, 1994, Mehta, 2003, Sharma et al. 2015). Along with a brief
description of the styles, they will be analyzed with respect to their possibility
to tackle the challenges towards data-intensive systems, as described in the
previous section (see Table 1 for a summary).

Shared data – the essence of this style, as its name says, is the so-called sha-
red data connector that acts as a medium for communication between other
components. This is one of the traditional styles used for many years, howe-
ver, it has new insights concerning data-intensive systems, because when the
volume of data increases, it becomes difficult for maintenance. This is fur-
ther toughened if the shared data is distributed, which is the case of most
modern systems. Therefore, the basic implementation of this style is not
suitable for application to tackle the challenges for data-intensive software
systems, except for reuse, although it is the foundation to deal with data
volume, concurrency, and information modeling.

Sharding – according to some sharding strategies, this architectural style
tries to organize data logically into smaller chunks. The final goal is to opti-
mize access to potentially distributed big data volumes. The sharding style is
usually applicable in combination with shared data to deal with large volumes
of data and search and dissemination.

Pipes-and-Filters – this style has its roots in the dawn of information
systems. It defines independent entities called filters (or components) that
represent the computational part of the system, and pipes, which serve as
connectors between the filters. A single filter can consume or produce data
to one or more ports. They can also run concurrently and are not considered
directly dependent on each other. A pipe has a single source for its input and
a single target for its output. It preserves the sequence of data items and does
not alter the data passing through. The most interesting part of this style is



42 Dimov et al.

the implementation of the pipes. They may represent batch processing or on
the other extreme – stream processing units. Most of the modern data-driven
architectures and frameworks represent these variations of the pipe-and-filter
style. For example, Lambda-architectures (Kraetz, 2021) employ both varia-
tions to provide reliable and timely delivery of substantial amounts of data.
Other alternatives like Kappa and Delta (Armbrust et al., 2020) architectures
also should be considered representatives of this style.

Priority Queue – this is another one of the traditional architectural styles,
which purpose is to prioritize requests between components in the arch-
itecture. This way some of the requests will be processed more quickly
(according to predefined or dynamic priorities). Priority queues may serve
different purposes mainly in terms of synchronization.

Publish-Subscribe – The essence of this style is a common framework (also
called a publisher) that acts as a connector between components, which inte-
ract via the publisher and have minimal or no knowledge about each other.
Variations and earlier implementations of this style are also known as mes-
sage queuing, event broker, implicit invocation, message passing, or shared
bus. This style finds application in modern data-intensive systems (like Kafka)
and has been proven to be successful in many aspects. However, it seems to
be not suitable in terms of software reuse.

Wrapper – is a very general software architectural approach, which aims to
“wrap” a component in a way to hide its interfaces from the rest of the world
completely. Such an approach may have various goals: better reusability,
security, reliability, and so on. Description of particular styles that imple-
ment the wrapper approach is beyond the scope of this paper, however, the
most popular examples are proxy, broker, adaptor, mediator, façade, ambas-
sador, etc. Wrapper techniques may find application to tackle all challenges
of data-intensive systems.

Caching – caches are components that may also be classified under the
wrapper style, they act as a mediator between the data consumer and the data
source, with the latter having larger times to retrieve the data. The goal is to
speed up data retrieval as caches provide faster access. Cache is appropriate
to deal with in some circumstances with data volumes and search. It can also
encourage concurrency if the cache invalidation is properly designed, which
needs additional research, however.

CONCLUSION

The architectural design of data-intensive systems brings many challenges
in terms of various systems characteristics and requirements. This paper
outlines some essential architectural patterns helping to overcome existing
problems in achieving system architectural design that will meet these arch-
itectural qualities. The presented patterns are further scrutinized concerning
their potential to tackle the previously identified challenges.

Our further work will augment the mapping of architectural styles and
patterns to the identified challenges in designing data-intensive systems and
applications. Applying the patterns appropriately to such systems, together
with the most recent advances and paradigms in software engineering (e.g.,



Architectural Approaches to Overcome Challenges in the Development 43

the micro-services paradigm), will ensure distributed architectures with high
cohesion and very low coupling.

ACKNOWLEDGMENT

The research presented in this paper was partially supported by the Sofia
University “St. Kliment Ohridski” Research Science Fund Project No. 80-10-
74/25.03.2021 – “Data intensive software architectures”.

REFERENCES
Armbrust, M., Das, T., Sun, L., Yavuz, B., Zhu, S., Murthy, M., Torres, J., van

Hovell, H., Ionescu, A., Łuszczak, A., Świtakowski, M. (2020). Delta lake: high-
performance ACID table storage over cloud object stores. Proc. of the VLDB
Endowment, 13(12), 3411–3424, https://databricks.com/research/delta-lake-hig
h-performance-acid-table-storage-overcloud-object-stores

Bass, L., Clemens, P., Kazman., R. (2013). Software Architecture in Practice, Addison
Wesley.

Bolukbasi T., Chang K.W., Zou J., Saligrama V., Kalai A. (2016). Man is to Compu-
ter Programmer as Woman is to Homemaker? Debiasing Word Embeddings, vol.
abs/1607.06520, 2016, http://arxiv.org/abs/1607.06520

Chowdhury, R. and J. Williams. (2021). Introducing Twitter’s first algorithmic
bias bounty challenge, https://blog.twitter.com/engineering/en_us/topics/insights
/2021/algorithmic-bias-bounty-challenge

Garlan D., Shaw., M. (1994). An introduction to Software Architecture, CMU SEI
Technical Report.

Hey, T., Tansley, S., Tolle, K. M. (2009). Jim Gray on eScience: a transformed
scientific method. The Fourth Paradigm.

Kephart, J., Chess, D. (2003). The vision of autonomic computing. Computer. 1(36).
41–50.

Kleppmann, M. (2017). Designing Data-Intensive Applications. O’Reilly. Beijing.
Kraetz, D., Morawski, M. (2021). Architecture Patterns—Batch and Real-Time

Capabilities. In The Digital Journey of Banking and Insurance, Volume III.
89–104. Palgrave Macmillan, Cham.

Mattmann, C.A., Crichton, D.J., Hart, A.F., Goodale, C., Hughes, J.S., Kelly, S.,
Cinquini, L., Painter, T.H., Lazio, J., Waliser, D., Medvidovic, N., (2011). Archite-
cting data-intensive software systems. In Handbook of data intensive computing.
Springer, New York, NY. 25–57

Mehta, N., Medvidovic, N. (2003). Composing Architectural Styles from Architectu-
ral Primitives. Proc. of the 11th ACM SIGSOFT Symposium on the Foundations
of Software Engineering 2003. 347–350.

Microsoft (2022). Cloud Design Patterns, Azure Architecture Center, Microsoft
Documentation, https://docs.microsoft.com/en-us/azure/architecture/patterns/

Sharma, A., Kumar, M., Agarwal, S. (2015). A complete survey on software
architectural styles and patterns. Procedia Computer Science, 70, 16–28.

Tudoran, R., Costan, A., Antoniu, G., Goetz, B. (2014). Big Data Storage and Pro-
cessing on Azure Clouds: Experiments at Scale and Lessons Learned. In: X. Li, J.
Qiu (eds.), Cloud Computing for Data-Intensive Applications, Springer.

Zhao, Y., Li, Y., Raicu, I., Lin, C., Tian, W., Xue, R. (2014). Migrating Scientific
Workflow Management Systems from the Grid to the Cloud. In: X. Li, J. Qiu
(eds.), Cloud Computing for Data-Intensive Applications, Springer.

Zhao B, Zhong, J., He, B., Luo, Q., Fang, W., Govindaraju, N. (2014). GPU-
Accelerated Cloud Computing for Data-Intensive Applications. In: X. Li, J. Qiu
(eds.), Cloud Computing for Data-Intensive Applications, Springer.

https://databricks.com/research/delta-lake-high-performance-acid-table-storage-overcloud-object-stores
https://databricks.com/research/delta-lake-high-performance-acid-table-storage-overcloud-object-stores
http://arxiv.org/abs/1607.06520
https://blog.twitter.com/engineering/en_us/topics/insights/2021/algorithmic-bias-bounty-challenge
https://blog.twitter.com/engineering/en_us/topics/insights/2021/algorithmic-bias-bounty-challenge
https://docs.microsoft.com/en-us/azure/architecture/patterns/

	Architectural Approaches to Overcome Challenges in the Development of Data-Intensive Systems
	INTRODUCTION
	ARCHITECTURAL CHALLENGES FOR BIG DATA
	ARCHITECTURAL STYLES IN DATA INTENSIVE SYSTEMS
	CONCLUSION
	ACKNOWLEDGMENT


