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ABSTRACT

Preventing diabetic foot ulcers (DFU) is critical for diabetes mellitus (DM) patients. Increased
stiffness of plantar foot may cause higher plantar pressure leading to a higher risk of DFU. Soft
tissue stiffness can be determined by measuring the soft tissue thickness with indentation depth
and stress. Therefore, we hypothesized that the deep learning model could detect the ultra-
sound image pixel change under soft tissue compression. This study aimed to apply the deep
learning model to analyze the ultrasound image pixel thickness of plantar foot, then predict the
soft tissue indentation depth and loading force for estimating the stiffness. This study has deve-
loped a motor-driven ultrasound indentation system to apply programmable compression and
simultaneously assess soft tissue mechanical properties and responses in indentation depth and
loading force. In addition, the effective Young’s modulus was calculated to characterize mechani-
cal properties of soft tissues in the first metatarsal head. The deep learning method employed the
YOLOv5x model to train and detect the small object in the indentation depth, such as ultrasound
image pixel changes. Finally, the dataset images were processed with labeling annotation from
the soft tissue indentation depth and loading force. The deep learning results showed 0.995 in
mean Average Precision (mAP), 0.999 in precision, 1.000 in Recall, and 0.013 in Loss. A significant
correlation was found between the ultrasound image pixel changes and soft tissue indentation
depth (r = 0.98, p < 0.05). Furthermore, a significant correlation was observed between the
ultrasound image pixel changes and the loading force in the first metatarsal head (r = 0.85, p
< 0.05). The validation and prediction models were lower than the training models in the effe-
ctive Young’s modulus results. However, the results of the initial modulus were similar between
the three models. Our findings recommend that applying deep learning in the ultrasound image
can predict soft tissue indentation depth and loading force to calculate the stiffness of the plantar
foot.
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INTRODUCTION

One of the most severe diabetes mellitus (DM) issues is diabetic foot ulcers
(DFU). (Zhang et al., 2017). For people with DM, the prevention of DFU is
a critical issue. The lower stiffness and higher plantar soft tissue thickness
in the metatarsal head have an increased risk of DFU (Naemi et al., 2017).
Furthermore, the index for evaluating soft tissue relates to indentation depth
and pressure loading force (Li et al., 2006). Therefore, soft tissue stiffness
can be determined by measuring the soft tissue indentation depth and pres-
sure loading force (Makhsous et al., 2008). Ultrasound has become one of
the most regularly used imaging modalities in clinical practice (Liu et al.,
2019). Jan et al. also used an ultrasound indentation system to measure
pressure loading force and indentation depth in plantar soft tissues (Jan
et al., 2012). In addition, previous studies detect and locate the myocar-
dial wall based on ultrasound images using a deep learning model with an
accuracy of 0.900 (Zhuang et al., 2020). Thus, real-time deep learning can
assist the measurement of soft tissue thickness based on B-mode ultrasound
images (Ardhianto et al., 2021). Therefore, we hypothesized that the deep
learning model could detect the ultrasound image pixel change under soft
tissue compression. This study aimed to apply the deep learning model to
detect the ultrasound image soft tissue pixel thickness, then predict soft tis-
sue indentation depth and pressure loading force for calculating the stiffness.
Understanding soft tissue stiffness may be beneficial for preventing the risk
of DFU.

MATERIAL AND METHODS

This study is a pilot study, and we choose one healthy subject as a sample.
The subject was a 28-years-old female with a body mass index of 17.7 kg/m?.
Our previous studies conducted the examination (Shen et al., 2021, Liau
et al., 2018, Lung et al., 2016). The room temperature was maintained at 24
+ 2°C. Subject lying in supine position with an ultrasound probe position
under the first metatarsal head (Figure 1A). The ultrasound images represent
soft tissue under the first metatarsal head because DFU frequently occurs at
pressure-sensitive sites (Perry et al., 1995).

This study has developed a motor-driven ultrasound indentation system
to apply programmable compression and simultaneously assess soft tissue
mechanical properties and responses in indentation depth and pressure loa-
ding force. We used the motor-driven ultrasound indentation system for the
indentation tests. The motor-driven ultrasound indentation system mainly
consists of four parts: stepper motor, load cell, ultrasound system, and stan-
doff holder. In detail, a linear ultrasound probe set to 12 MHz to analyze soft
tissue (5-12 MHz, 128 elements, 39 mm Array footprint, Telemed, Vilnius,
Lithuania) attached to a PC-based ultrasound system (sampling rate 1000 Hz,
ArtUs EXT-1H scanner, Telemed, Vilnius, Lithuania). The ultrasound probe
was mounted on the stepper motor (Model TL-SL1010-X, Tanlian Electro
Optics Co., Ltd., Taoyuan, Taiwan), and 49-N load cell (sampling rate
100 Hz, Model UKA-E-005, Li-Chen Measure Co., Ltd., Kaohsiung, Taiwan)
(Figure 1B). Soft tissue thickness was measured using ultrasound images in
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Figure 1: Soft tissue indentation measurements. (A) Ultrasound probe position in the
first metatarsal head. (B) Ultrasound indentation system.

soft tissue strain ratio. Soft tissue has loading and unloading in each cycle.
Therefore, indentation depth and pressure loading force are obtained simul-
taneously in five cycles. Additionally, we divided into two cycles become 12
sections. The 6 sections for the train data of deep learning, and another 6
sections for validation.

YOLO is a real-time object detection model that reformulates the object
into a single regression issue (Redmon et al., 2016). Furthermore, YOLO
employs a single neural network architecture to predict bounding boxes
from dataset ultrasound images and provide faster detection (Goyal et al.,
2018). Therefore, YOLO detects faster, especially for medical images (Ardh-
ianto et al., 2021). This study built the detection with PyTorch 1.7.0 and
YOLOvS5x on Windows 10. The model parameters were: the batch size
was 8, the momentum and weight decay rates were 0.937 and 0.0005,
respectively, the learning rate was 0.01, and the epoch was 100. The tests
were performed on a machine with the following specifications: Core 17
10700 CPU, 32 GB RAM, and an NVIDIA RTX 3080 10GB graphics
card.

This study used 360 raw ultrasound images from 6 sections dataset con-
taining various indentation depth. The selected images in 781 x 1563 pixels.
We use the roboflow labeling platform to annotate the object and category
with annotating name “thickness.” The labeled pictures are divided into the
training and validation sets; we used 50% (180 images) from 3 sections for
training and 50% (180 images) for validation. The training section labeled
the soft tissue thickness between skin and bone using the 360 bounding box
in the dataset. Furthermore, we input datasets labeled to YOLOvS5x models
to predict soft tissue thickness.

Classifier modification for the ultrasound dataset has one object category,
namely thickness. The dimension of the output tensor is 3 x (5 + 1) = 18,
where 3 represents the three template boxes for each grid prediction, and
5 illustrates each prediction box coordinates (x, y, w, b) and confidence
(confidence, ¢). Each anchor box is calculated with confidence values of dif-
ferent classes and four coordinate values (x, vy, w, b), which can predict the
thickness location. The prediction result of each image must be converted
into an annotation with the format x1, y1, x2, y2 to calculate the original
coordinates.
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Figure 2: The example of converting YOLOv5x coordinates into pixel coordinates.
YOLOvbx coordinates are x, y, w, h, W, and H. Pixel coordinates xy, y1, X2, y2; x and
y, coordinates were presenting the center of the box; w, the width of the bounding
box; h, the height of the bounding box; W, the width of the image; H, the height of the
image.

The YOLOvVSx records four 180 corner coordinates of the bounding box
prediction by converting the YOLOvSx coordinates as equation (1):

-w X —w —w X + w

X1 = yT ), y1 = TW>9C2 = yTW,yz = %W (1)

Where x1, y; represents the bounding box coordinates of soft tissue thi-
ckness and x;, y» represents the bottom of the bounding box coordinates
(Figure 2). The center of the soft tissue thickness bounding box is x and 1y,
the width and height of the bounding box area are w and b, and the width
and height of the images are W and H. In detail, x1 and y; are the top-left
corner coordinates, and the below-left corner soft tissue thickness bounding
box is x2 and 5.

The distance between skin and bone was measured using the distance for-
mula. After getting the distance result, we calculated the section average of
180 steps in 12 sections, loading and unloading into 6 sections. Equation (2)
shows the distance formula:

d = \/(xz—xl)2 + (J’Z—yl)z (2)

where d is the symbol of distance to calculate the distance between the skin
and bone of soft tissue for measurements.
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Regression analysis was performed to determine the correlation between
soft tissue thickness pixel, indentation depth, and pressure loading force.
The effective Young’s modulus (E) is a traditional material constant to quan-
tify elastic properties of soft tissues (Hayes et al., 1972, Zheng and Mak,
1999). The equation used to extract effective Young’s modulus E is defined
as equation (3):

(1—12v?) P

b= ek " w

(3)

where v is the Poisson’s ratio, a is the indenter radius, k is a scaling factor
dependent on the Poisson’s ratio, indenter radius, and tissue thickness, b is
the soft tissue thickness, P is the loading force, and w is the indentation depth.
Generally, 0.45 has been used as the Poisson’s ratio for biological soft tissues
(Zheng and Mak, 1999). The k value was obtained from the information
extracted from the publication of Hayes and colleagues (Hayes et al., 1972).

The correlations between soft tissue indentation depth of YOLOvS5x pre-
diction and soft tissue indentation depth and soft tissue pressure loading
force were determined using a Pearson product-moment correlation analy-
sis. All statistical tests were performed using SPSS 25 (IBM, NY, USA) at the
significance level of 0.05.

RESULT

The accuracy of bounding box detecting ultrasound images in soft tissue
thickness was shown 0.995 in mean Average Precision (mAP), 0.999 in pre-
cision, 1.000 in Recall, and 0.013 in Loss. The accuracy has become the
most popular metric to evaluate object detection models (Nasirahmadi et al.,
2019). A high mAP means that the trained model performs well (Kumar and
Punitha, 2020). Significant correlations between the soft tissue image pixel
thickness and indentation depth (r = 0.98, p < 0.05) and the soft tissue image
pixel thickness and pressure loading force (r = 0.85, p < 0.05) in the first
metatarsal head as shown in Figure 3. The percentage of effective Young’s
modulus (E1, E2, and E3) was 1%, 4%, and 14% between the validation
model and prediction model (Figure 4).

DISCUSSION

This study demonstrated that the YOLOvS5x model detected soft tissue thi-
ckness to predict the indentation depth and pressure loading force under
the first metatarsal head. Therefore, we hypothesized that YOLOvS5x could
detect soft tissue thickness, consistent with the hypothesis of this study. The
accuracy of the YOLOvSx model is based on our prediction using the boun-
ding box. Besides that, we also have significant correlations between the
thickness detection of YOLOvS5x with soft tissue loading indentation depth
and pressure loading force. The r-value has shown a good result.

This study was compared with other studies to measure thickness using
deep learning. However, other studies use different methods, such as



192 Pusparani

( ) Correlation between Thickness ( ) Correlation between Thickness
and Indentation Depth and Pressure Loading Force
15 05
&
14 ° 04
E
€.,
<3t 503
5 ) =
5 g
Eq 5 00
S o u 02
k)
Q
1+ o 0.1
10 . 0
340 350 360 370 380 390 400 410 340 350 360 370 380 %0 400 410

Thickness (pixel) thick thin

Thickness (pixel)
Figure 3: The scatter plots show the relationship between the image pixel thickness
detection of Yolo with soft tissue loading property changes. (A) Correlation between
pixel thickness and the indentation depth. (B) Correlation between pixel thickness and
pressure loading force. (*, p < 0.05; **, p < 0.01).
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Figure 4: The effective Young’s modulus. (A) Training data. (B) Validation data. (C)
Regression prediction data. (E1, Initial modulus; E2, nonlinear modulus; E3, effective
Young'’s modulus).

Table 1. The comparison of detection performance with the related literature study.

References Study Case Method Accuracy
Yen et al. 2008 Tissue Thickness ANN 0.920
Foersch et al. 2021 Soft Tissue Sarcoma DenseNet121 0.871
This study Soft Tissue Thickness YOLOvSx 0.995

Note: ANN, Artificial Neural Network; DenseNet121, Densely Connected Convolutional Network;
YOLO, You Only Look Once.

Yen et al. using the ANN model to predict tissue thickness has 0.920 accura-
cies (Yen et al., 2008). Foersch et al. used the DenseNet12 model to predict
soft tissue sarcoma with 0.871 accuracies (Foersch et al., 2021). According to
the results of Guo et al., ultrasound images with YOLO have better accuracy
(Guo et al., 2021). The detection performance comparison with the related
literature study is in Table 1.

A model for soft tissues to be represented in the hysteresis loop of dyna-
mic systems in loading and unloading conditions (Safadi and Rubin, 2014).
We choose the middle in two cycles; one section is for the training, another
section is for validation. The value can be presented as improving indentation



Plantar Soft Tissue Stiffness Automatic Estimation in Ultrasound Imaging 193

depth and pressure loading force of soft tissue. As proposed by Fung et al., a
commonly used model to characterize hysteresis loops of tissue can be mode-
led by characterizing the loading curve and the unloading curve (Fung, 1993).
Soft tissue exhibits hysteresis in a loading-unloading test. Hence, we used
hysteresis to predict soft tissue indentation depth and pressure loading force.
Therefore, for training validation were used polynomial to get the value of
soft tissue thickness correlation with indentation depth and pressure loading
force (Brody et al., 1981).

In this study, we have two limitations. First, we use the deep learning model
to train and detect the thickness using the bounding box. This paper only
uses one box for each image to measure the image pixel thickness. In con-
trast, machine learning refers to Scikit learning that may be more efficient
and fast to get the regression result (Raschka and Mirjalili, 2019). Future
studies may consider applying machine learning to get the regression result
directly. Second, the limitation in this study used combined data between
loading and unloading to predict soft tissue thickness. Predicting the soft tis-
sue thickness separately during loading and unloading would provide a more
detailed measurement of soft tissue stiffness change in future studies.

CONCLUSION

A significant correlation was found between the ultrasound image pixel
changes and the soft tissue indentation depth. Furthermore, a significant cor-
relation was also getting between the ultrasound image pixel changes and
the soft tissue pressure loading force in the first metatarsal head. The vali-
dation and prediction models were lower than the training models in the
effective Young’s modulus results. However, the results of the initial modu-
lus are similar between the three models. Our findings suggest that applying
deep learning in the ultrasound image can be predicted soft tissue indentation
depth and pressure loading force to calculate the initial stiffness.
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