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ABSTRACT

Correctly using a rapid upper limb assessment is crucial to avoid musculoskeletal
disorders. Although motion capture technologies are widely used, they cannot be
used in large-scale industrial environments due to their high cost and performance
impacted by the surrounding environment. We thus compared the effectiveness of
a commercial machine vision (MV) algorithm (ErgoEdge) based on an RGB camera
against a developed application based on the depth camera Microsoft Azure Kinect
(AzKRULA) for RULA evaluation. Fifteen static postures were evaluated with both
systems and compared with those of an ergonomics expert showing a substantial
agreement between the three evaluations. At the same time, it showed that RGB
camera must be placed on the side of the worker due to the difficulties of the MV algo-
rithm in reconstructing from a frontal view, important joint angles (e.g., to evaluate
the neck), which can invalidate the RULA evaluation provided by ErgoEdge.
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INTRODUCTION

The fourth industrial revolution has changed organizations and processes
as well as human work (Neumann and Village, 2012). Although there have
been continuous improvements in working conditions with the automation
of manual activities, several tasks are still difficult to automate (Bortolini
et al., 2017). In addition, more than a half of the tasks performed are short
and repetitive (Bortolini et al., 2018), conditions leading to work related
musculoskeletal disorders (WMSDs). Repetitive hand and arm movements
are the most prevalent in Europe being reported by 61% of workers and
play a primary role in causing WMSDs (Eurofound, 2017). Consequen-
tly, it is crucial to take into account the health of the workers by applying
policies that minimize the risk of WMSDs (Silverstein and Clark, 2004).
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Firstly, exposure to risk factors needs to be assessed and any subsequent
ergonomic interventions need to be planned (Manghisi et al., 2017) (e.g.,
workplace redesign). There are three methods for the evaluation: self-reports,
direct measurements and observational methods (Li and Buckle, 1999). Self-
reports are negatively affected by subjectivity (David, 2005), while direct
methods require sensors attached to the worker’s body that are usually expen-
sive, highly intrusive and not precise (Kowalski et al., 2012). Among the
observational methods, the most commonly used are: RULA (Lynn and
Corlett, 1993), Rapid Entire Body Assessment (REBA) (Hignett and McA-
tamney, 2000), NIOSH lifting equation (Snook and Ciriello, 1991), Strain
Index (Moore and Garg, 1995), OVAKO Working posture Analysing System
(OWAS) (Karhu, Kansi and Kuorinka, 1977) and the concise exposure index
(OCRA) (Occhipinti, 1998). All these methods require an ergonomic practi-
tioner who has to perform a posture evaluation with a time-consuming video
analysis that leads to low accuracy and high intra-and-inter-observer variabi-
lity. To lower these weaknesses many studies now integrate different motion
capture (MOCAP) technologies in the ergonomic assessment (Manghisi et al.,
2017) (Abobakr et al., 2019) (Yan, Li, Li, et al., 2017) (Altieri et al., 2020).
MOCAP systems can be classified into sensor-based and optical. Although
some studies (Battini, Persona and Sgarbossa, 2014) (Hsu and Lin, 2019)
have used Inertial Measuraments Units (IMUs) as direct methods in real wor-
king environments, they are still challenging for the discomfort caused to the
worker that is in contrast with a human-centred design.While optical systems
are less intrusive and provide a valid solution for an ergonomic risk asses-
sment (ERA) (Manghisi et al., 2017). The most commonly cameras for these
applications are Kinects: a ready-to-use technology that provides a real-time
segmentation using depth-RGB data (Microsoft, 2021). The third and cur-
rent Kinect generation is called Azure Kinect, which was preceded by Kinect
v1 and v2 (Tölgyessy et al., 2021). Many studies exploited Kinects for ERA.
Diego-Mas et al. (Diego-Mas and Alcaide-Marzal, 2014) calculated OWAS
with Kinect v1, Manghisi et al. (Manghisi et al., 2017) semi-automatically
calculates RULA with a Kinect v2, Plantard et al. (Plantard et al., 2017)
calculated RULA from Kinect v2, Bortolini et al. (Bortolini et al., 2018) uti-
lised four Kinect v2, creating a motion capture system (MAS) overcame one
of the main drawbacks of depth cameras, i.e., the inaccuracy due to occlu-
ded postures (Plantard et al., 2015). The most two commonly used MOCAP
systems for ERA are depth cameras and IMUs (Wilhelm et al., 2020). How-
ever, to the best of our knowledge and as confirmed in (Lunin and Glock,
2021), there have been no studies on ERA using the new Azure Kinect even
if it has been proved to outperforms Kinect v1 and v2 in terms of precision,
in the number of joints tracked and in terms of the body segmentation accu-
racy (Tölgyessy et al., 2021). This is the first gap we want to fulfil with the
development of an application based on Azure Kinect for semi-automatically
calculate RULA (AzKRULA). Azure Kinect nevertheless still has some of the
limitations of depth cameras: occlusion and the limited working range which
is 3.86 m for Azure Kinect in NFOV unbinned, i.e., the set-up here used.
A normal camera has a greater vision field depth and can be used to ove-
rcame these limitations combining it with a MV algorithm to extract the
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body segmentation (Li, Martin and Xu, 2020). Reconstructing postures from
a 2D image is challenging (Toshev and Szegedy, 2014) but new powerful
GPUs enable the use of convolutional neural networks (CNNs) to speed-up
pose reconstruction (Newell, Yang and Deng, 2016) . Yan et al. (Yan, Li,
Wang, et al., 2017) evaluated OWAS based on RGB cameras testing several
types of machine learning models. Ding et al. (Ding et al., 2019) presented a
vision-based method for assessing the upper body postures of a sitting wor-
ker. Altieri et al. (Altieri et al., 2020) developed a MAS using a network of
RGB-cameras that exploits the key-point detection library “OpenPose” to
calculates OCRA. Li, Martin and Xu (Li, Martin and Xu, 2020) exploited a
RGB camera for assessing RULA by training a CNN on a sample of label-
led postures from (Xu et al., 2011) and (Ionescu et al., 2014). Postural risk
assessments using normal RGB cameras are increasingly used but have not
already been compared with depth cameras. Thus, as second contribution
we compared our new Azure Kinect-based RULA calculation (AzKRULA)
with a MV software based on a normal RGB camera (ErgoEdge) on 15 static
postures well known in literature (Manghisi et al., 2017). Section 2 describes
the two methods for semi-automatically calculating RULA; Section 3 reports
the experimental results; and, finally, Section 4 contains the conclusions and
some suggestions for the further research.

METHODS

The RULA score comes from an assessment grid which is filled in using joint
angles. For each joint in each section, Section A (upper arm, lower arm, and
wrist) and Section B (neck, trunk, and legs), a series of principal factors,
based on the joint angles, along with secondary factors here defined as factors
in the RULA calculation for which there are not prescribed threshold (e.g.,
abduction or trunk twist) are evaluated and integrated in a score (Lynn and
Corlett, 1993). The final RULA score ranges from 1 to 7 and is classified
into four levels of actions. In both the methods, RULA is semi-automatically
calculated since the muscle use and force are assumed to be fixed and are
assigned manually as well as some minor factors that will be detailed.

AzKRULA

We implemented AzRULA on Python 3.8 with an application that calculates
the RULA score for each frame passed to it exploiting the Azure Kinect Body
Tracking SDK (Microsoft, 2021a), which is an algorithm based on CNNs
that retrieved 32 joints in the 3D space as reported in Figure 1.

Not all the retrieved joints were needed to calculate the angles for the
RULA tables. However, additional processing was required on retrieved
joints.We followed the procedure developed in (Manghisi et al., 2017) modif-
ying it accordingly with the new joints provided by Azure Kinect (with respect
to Kinect v2). As they done for the leg score, we carried out a manual eva-
luation like we had done for muscle and force factors and as we also did
for wrist rotation. However, with respect to (Manghisi et al., 2017), where a
manual evaluation of the neck twist was made, we calculate it automatically
thanks to the new joints tracked by the Azure Kinect.
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Figure 1: Azure kinect joints detected, and nomenclature.

Figure 2: ErgoEdge joint detected; nomenclature and example of a segmentation.

ErgoEdge

ErgoEdge is a commercial solution designed for ease-of-use and compre-
hensive assessment at worksites. A normal smartphone video is processed
through the deep learning models to estimate RULA. A demo of the softw-
are can be found at (CerebrumEdge, 2021). Figure 2 shows the data flow
diagram, the joints detected by ErgoEdge and their nomenclature as well as
an example of a segmentation performed on a well-known static posture.
From the RGB video row, the joint is detected and tracked than from the 2D
joints the 3D ones are inferred and used to calculate the final RULA score
along with some manual input. ErgoEdge automatically detects the leg score,
which is a manual input for AzKRULA. Conversely, while ErgoEdge requires
the wrist flexion and twist to be inputted manually, AzKRULA automati-
cally calculates them thanks to the additional points on the hands provided
by Azure Kinect.
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Figure 3: RULA score derived with AzKRULA, ErgoEdge and the expert.

EXPERIMENT

For the video recording we used an Azure Kinect with the following settings:
Colour modeÔ On 720p, Depth modeÔ On NFOV 2x2 binned, No depth
delays, Frames per second (fps)Ô15, IMUÔON, External syncÔStandalone,
Sync delayÔ0, ExposureÔ Auto, GainÔAuto. The Kinect was always placed
at a height of 110 cm and at 220-250 cm from the subject. We evaluated
RULA using AzKRULA and ErgoEdge on 15 different static postures, the
same as those investigated in (Manghisi et al., 2017) numbered in the same
way, that were also evaluated by an ergonomist expert with more than 10
years of experience. The results of the experiment are shown in Figure 3. The
file with the videos (in mkv format) from which the frames were extracted
and the exact frame used for each posture can be found here: https://github
.com/amcorGit/AzKRULA-experimental-files.

The hypothesis we tested in this experiment was that with regard to the 15
static postures, AzKRULA and ErgoEdge would agree in the RULA calcula-
tion and that both would also agree with the expert. The agreement between
AzKRULA and the ergonomic expert calculated in terms of linear weighted
Cohen’s Kappa (Fleiss, Cohen and Everitt, 1969) using the Landis and Koch
Scale (Landis and Koch, 1977) result in 0.78 for the right side and 0.71 for
the left one indicating a substantial agreement. This result is confirmed by
the statistically significant p-values (<0.001) and by the high proportional
agreement (0.95 and 0.93). AzKRULA has a mean error of -0.26 respect to
the ergonomist and this slightly underestimation is mainly caused by secon-
dary factors for which minor changes can lead to high differences in RULA.
Secondary factors for which are not available standardise thresholds (e.g.
how much the trunk have to be twisted for assessing a trunk twist?). Simi-
larly, ErgoEdge and the expert have a substantial agreement in both the side
of the body with Cohen’s Kappa that result in 0.63 for the left side and 0.61
for the right with a p-value less than 1% less than 5% respectively. Ergo-
Edge showed a mean error near to zero while the major differences were
given by secondary factors (e.g. a neck flection not individuated by Ergo-
Edge in posture 8). Likewise, AzKRULA and ErgoEdge have a substantial
agreement in both side of the body. It is worth focusing on the results for the
frontal postures. In fact, ErgoEdge did not agree with the expert in all six
evaluations of frontal postures. These differences are due to the challenge in
calculating angles in a 3D space from a 2D image. The use of ErgoEdge at
this development phase is thus recommended with a side-view.

https://github.com/amcorGit/AzKRULA-experimental-files
https://github.com/amcorGit/AzKRULA-experimental-files
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CONCLUSION

We have presented a new semi-automatic evaluation of RULA, AzKRULA,
based on a the new delpth camera Azure Kinect.We compared our new appli-
cation with a commercial one, ErgoEdge, which exploits simple RGB images
with a MV algorithm. The following conclusions can be drawn together with
some ideas for future research:

• The slight underestimation provided by AzKRULA is due to secondary
factors. Thus, thresholds on secondary factors need to be standardized
(e.g., how many twisting degrees indicate a trunk twist?) to create a
standard reference for practitioners in similar situation.

• The MV algorithm based on simple RGB data (i.e., ErgoEdge) can be
exploited for RULA evaluation as both the expert and AzKRULA were
in substantial agreement with it. However, ErgoEdge has limitations in
calculating the joint angles from frontal postures suggesting that when
using ErgoEdge side views should be used of the principal parts of the
body.

• Extended tests are needed in real working environments for both
AzKRULA and ErgoEdge as well as for other methods available in lite-
rature (e.g. (Manghisi et al., 2017)), for this reason applications by
practitioners of the two applications would be beneficial.

Finally, we encourage academics and practitioners to exploit the supple-
mentary materials within this paper, to test different software and compare
results. This to construct a large database of postures and relative ergonomic
assessments aimed at training, validating, and testing further solutions.
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